1
|
Lin X, Zheng J, Cai X, Liu L, Jiang S, Liu Q, Sun Y. Glycometabolism and lipid metabolism related genes predict the prognosis of endometrial carcinoma and their effects on tumor cells. BMC Cancer 2024; 24:571. [PMID: 38720279 PMCID: PMC11080313 DOI: 10.1186/s12885-024-12327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.
Collapse
Affiliation(s)
- Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian University of Chinese Medicine, Fuzhou, 350014, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
2
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
3
|
Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines 2022; 10:biomedicines10051190. [PMID: 35625926 PMCID: PMC9138494 DOI: 10.3390/biomedicines10051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The oxidative stress phenomenon is a result of anticancer therapy. The aim of this study was the assessment of gene expression profile changes, and to determine the miRNAs regulating genes’ transcriptional activity in an Ishikawa endometrial cancer culture exposed to cisplatin or salinomycin, compared to a control culture. The molecular analysis comprised the microarray technique (mRNAs and micro RNA (miRNA), the real-time quantitative reverse transcription reaction (RTqPCR), enzyme-linked immunosorbent assay (ELISA) reactions, and Western blot. NR4A2, MAP3K8, ICAM1, IL21, CXCL8, CCL7, and SLC7A11 were statistically significantly differentiated depending not only on time, but also on the drug used in the experiment. The conducted assessment indicated that the strongest links were between NR4A2 and hsa-miR-30a-5p and has-miR-302e, MAP3K8 and hsa-miR-144-3p, CXCL8 and hsa-miR-140-3p, and SLC7A11 and hsa-miR-144-3p. The obtained results suggest that four mRNAs—NR4A2, MAP3K8, CXCL8 and SLC7A11—and four miRNAs—hsa-miR-30a-5p, hsa-miR-302e, hsa-miR-144-3p and hsa-miR-140-3—changed their expressions regardless of the chemotherapeutic agent used, which suggests the possibility of their use in monitoring the severity of oxidative stress in endometrial cancer. However, considering the results at both the mRNA and the protein level, it is most likely that the expressions of NR4A2, MAP3K8, CXCL8 and SLC7A11 are regulated by miRNA molecules as well as other epigenetic mechanisms.
Collapse
|
4
|
Zhu Y, Sui B, Liu X, Sun J. The reversal of drug resistance by two-dimensional titanium carbide Ti 2 C (2D Ti2C) in non-small-cell lung cancer via the depletion of intracellular antioxidant reserves. Thorac Cancer 2021; 12:3340-3355. [PMID: 34741403 PMCID: PMC8671908 DOI: 10.1111/1759-7714.14208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Chemoresistance is a major barrier limiting the therapeutic efficacy of late stage non‐small cell lung cancer (NSCLC). In this study, we sought to use two‐dimensional titanium carbide (2D Ti2C) to reverse cisplatin resistance in NSCLC. Methods We first achieved favorable properties as a potential anti‐tumor agent. We then compared cell viability and cisplatin uptake in chemoresistant NSCLC cells before and after the use of 2D Ti2C. Afterwards, we explored the effects of 2D Ti2C on intracellular antioxidant reserves, followed by evaluating the subsequent changes in the expression of core drug resistance genes. Finally, we confirmed the tumor inhibitory effect and bio‐safety of 2D Ti2C in a drug‐resistant lung cancer model in nude mice. Results Due to the properties of thin layer, large specific surface area, and abundant reactive groups on the surface, 2D Ti2C can deplete the antioxidant reserve systems such as the glutathione redox buffer system, γ‐glutamylcysteine synthetase (γ‐GCS), glutathione peroxidase (GPx), glutathione‐S‐transferase‐Pi (GST‐π), and metallothionein (MT), thereby increasing the intracellular accumulation of cisplatin and decreasing the expression of drug resistance genes. Conclusions 2D Ti2C can reverse NSCLC chemoresistance both in vitro and in vivo, suggesting that it may potentially become a novel and effective means to treat chemoresistant NSCLC in the clinic.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiao Sun
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Costa BP, Nassr MT, Diz FM, Fernandes KHA, Antunes GL, Grun LK, Barbé-Tuana FM, Nunes FB, Branchini G, de Oliveira JR. Methoxyeugenol regulates the p53/p21 pathway and suppresses human endometrial cancer cell proliferation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113645. [PMID: 33271245 DOI: 10.1016/j.jep.2020.113645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant-derived compounds are a reservoir of natural chemicals and can act as drug precursors or prototypes and pharmacological probes. Methoxyeugenol is a natural compound found in plant extracts, such as nutmeg (Myristica fragrans), and it presents anthelmintic, antimicrobial, anti-inflammatory activities. Recently, interest in the anticancer activity of plant extracts is increasing and the therapeutic activity of methoxyeugenol against cancer has not yet been explored. AIM OF THE STUDY The present study aimed to evaluate the cancer-suppressive role and the molecular signaling pathways of methoxyeugenol in human endometrial cancer (Ishikawa) cell line. MATERIALS AND METHODS Proliferation, viability, and cell toxicity were assessed by direct counting, MTT assay, and LDH enzyme release assay, respectively. Antiproliferative effect were evaluated by nuclear morphological changes along with the cellular mechanisms of apoptosis and senescence by flow cytometry. The underlying molecular and cellular mechanisms were investigated by RT-qPCR, reactive oxygen species (ROS) levels, mitochondrial dysfunction, and proliferative capacity. RESULTS AND CONCLUSIONS Methoxyeugenol treatment significantly inhibited the proliferation and viability of Ishikawa cells. Probably triggered by the higher ROS levels and mitochondrial dysfunction, the gene expression of p53 and p21 increased and the gene expression of CDK4/6 decreased in response to the methoxyeugenol treatment. The rise in nuclear size and acidic vesicular organelles corroborate with the initial senescence-inducing signals in Ishikawa cells treated with methoxyeugenol. The antiproliferative effect was not related to cytotoxicity and proved to effectively reduce the proliferative capacity of endometrial cancer cells even after treatment withdrawal. These results demonstrated that methoxyeugenol has a promising anticancer effect against endometrial cancer by rising ROS levels, triggering mitochondrial instability, and modulating cell signaling pathways leading to an inhibition of cell proliferation.
Collapse
Affiliation(s)
- Bruna Pasqualotto Costa
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Marcella Tornquist Nassr
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Mendonça Diz
- Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Krist Helen Antunes Fernandes
- Laboratório de Imunologia Clínica e Experimental, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Géssica Luana Antunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Kich Grun
- Programa de Pós-graduação em Pediatria e Saúde da Criança, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Florencia María Barbé-Tuana
- Laboratório de Imunobiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bordignon Nunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Biofísica Celular, Molecular e Computacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Branchini
- Laboratório de Biofísica Celular, Molecular e Computacional, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|