1
|
Kaimuangpak K, Rosalina R, Thumanu K, Weerapreeyakul N. Macromolecules with predominant β-pleated sheet proteins in extracellular vesicles released from Raphanus sativus L. var. caudatus Alef microgreens induce DNA damage-mediated apoptosis in HCT116 colon cancer cells. Int J Biol Macromol 2024; 269:132001. [PMID: 38702007 DOI: 10.1016/j.ijbiomac.2024.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived bioactive macromolecules (i.e., proteins, lipids, and nucleic acids) were prepared as extracellular vesicles (EVs). Plant-derived EVs are gaining pharmaceutical research interest because of their bioactive components and delivery properties. The spherical nanosized EVs derived from Raphanus sativus L. var. caudatus Alef microgreens previously showed antiproliferative activity in HCT116 colon cancer cells from macromolecular compositions (predominantly proteins). To understand the mechanism of action, the biological activity studies, i.e., antiproliferation, cellular biochemical changes, DNA conformational changes, DNA damage, apoptotic nuclear morphological changes, apoptosis induction, and apoptotic pathways, were determined by neutral red uptake assay, synchrotron radiation-based Fourier transform infrared microspectroscopy, circular dichroism spectroscopy, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase activity assay, respectively. EVs inhibited HCT116 cell growth in concentration- and time-dependent manners, with a half-maximal inhibitory concentration of 675.4 ± 33.8 μg/ml at 48 h and a selectivity index of 1.5 ± 0.076. HCT116 treated with EVs mainly changed the cellular biochemical compositions in the nucleic acids and carbohydrates region. The DNA damage caused no changes in DNA conformation. The apoptotic nuclear morphological changes were associated with the increased apoptotic cell population. The apoptotic cell death was induced by both extrinsic and intrinsic pathways. EVs have potential as antiproliferative bioparticles.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (Research and Development in Pharmaceuticals Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Srisongkram T, Syahid NF, Piyasawetkul T, Thirawatthanasak P, Khamtang P, Sawasnopparat N, Tookkane D, Weerapreeyakul N, Puthongking P. Prediction of Spheroid Cell Death Using Fluorescence Staining and Convolutional Neural Networks. Chem Res Toxicol 2023; 36:1980-1989. [PMID: 38052002 DOI: 10.1021/acs.chemrestox.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Three-dimensional (3D) cell culture is emerging for drug design and drug screening. Skin toxicity is one of the most important assays for determining the toxicity of a compound before being used in skin application. Much work has been done to find an alternative assay without animal experiments. 3D cell culture is one of the methods that provides clinically relevant models with superior clinical translation compared to that of 2D cell culture. In this study, we developed a spheroid toxicity assay using keratinocyte HaCaT cells with propidium iodide and calcein AM. We also applied the transfer learning-containing convolutional neural network (CNN) to further determine spheroid cell death with fluorescence labeling. Our result shows that the morphologies of the spheroid are the key features in determining the apoptosis cell death of the HaCaT spheroid. Our CNN model provided good statistical measurement in terms of accuracy, precision, and recall in both validation and external test data sets. One can predict keratinocyte spheroid cell death if that spheroid image contains the fluorescence signals from propidium iodide and calcein AM. The CNN model can be accessed in the web application at https://qsarlabs.com/#spheroiddeath.
Collapse
Affiliation(s)
- Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nur Fadhilah Syahid
- Graduate School in the Program of Pharmaceutical Chemistry and Natural Products, Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanawat Piyasawetkul
- Doctor of Pharmacy Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pannaphat Thirawatthanasak
- Doctor of Pharmacy Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patcharapa Khamtang
- Doctor of Pharmacy Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nathida Sawasnopparat
- Doctor of Pharmacy Program, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Dheerapat Tookkane
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ploenthip Puthongking
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Wongkhieo S, Tangmesupphaisan W, Siriwaseree J, Aramsirirujiwet Y, Wiriyajitsomboon P, Kaewgrajang T, Pumloifa S, Paemanee A, Kuaprasert B, Choowongkomon K, Chester AH, Swainson NM. In vitro cholesterol lowering activity of Ganoderma australe mycelia based on mass spectrometry, synchrotron Fourier-transform infrared analysis and liver-spheroid bioactivity. Sci Rep 2023; 13:13619. [PMID: 37604902 PMCID: PMC10442327 DOI: 10.1038/s41598-023-40861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Mycelia were cultivated from a Thai wild mushroom identified as Ganoderma australe based on polymerase chain reaction (PCR) and morphological analyses. The mycelial extracts were examined for their active ingredients using a liquid chromatography-tandem mass spectrometry (LC‒MS/MS) method. This revealed the presence of lovastatin and tentative compounds including p-coumaric, nicotinamide, gamma-aminobutyric acid, choline, nucleosides, amino acids, and saccharides. The extracts had an inhibitory effect on the activity of HMG-CoA reductase in a concentration-dependent manner. At 2.5 mg/mL, the G. australe extracts did not interfere with the viability of HepG2 spheroids, but their biochemical composition was altered as determined by Fourier-transform infrared (FTIR) spectroscopy. The lipid profile of the spheroids treated with the mycelial extract was distinct from that of the control and the 5 µM lovastatin treatment, corresponding with the production of cholesterol by the spheroids. The mycelia of G. australe increased the percentage of high-density lipoprotein (HDL) production to 71.35 ± 2.74%, compared to the control and lovastatin-treated spheroids (33.26 ± 3.15% and 32.13 ± 3.24%, respectively). This study revealed the superior effect of natural compound mixtures to pure lovastatin, and the potential use of Thailand's wild G. australe as a functional food to prevent or alleviate hypercholesterolemia.
Collapse
Affiliation(s)
- Sudthirak Wongkhieo
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Yaovapa Aramsirirujiwet
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Tharnrat Kaewgrajang
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Saifa Pumloifa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Buabarn Kuaprasert
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Adrian H Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Napachanok M Swainson
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
Raik S, Sharma P, Kumar S, Rattan V, Das A, Kumar N, Srinivasan R, Bhattacharyya S. Three-dimensional spheroid culture of dental pulp-derived stromal cells enhance their biological and regenerative properties for potential therapeutic applications. Int J Biochem Cell Biol 2023; 160:106422. [PMID: 37172928 DOI: 10.1016/j.biocel.2023.106422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mesenchymal stem/stromal cell (MSC) spheroids generated in a three-dimensional (3D) culture system serve as a surrogate model that maintain stem cell characteristics since these mimic the in vivo behavior of cells and tissue more closely. Our study involved a detailed characterization of the spheroids generated in ultra-low attachment flasks. The spheroids were evaluated and compared for their morphology, structural integrity, viability, proliferation, biocomponents, stem cell phenotype and differentiation abilities with monolayer culture derived cells (2D culture). The in-vivo therapeutic efficacy of DPSCs derived from 2D and 3D culture was also assessed by transplanting them in an animal model of the critical-sized calvarial defect. DPSCs formed compact and well-organized multicellular spheroids when cultured in ultra-low attachment condition with superior stemness, differentiation, and regenerative abilities than monolayer cells. They maintained lower proliferative state and showed marked difference in the cellular biocomponents such as lipid, amide and nucleic acid between DPSCs from 2D and 3D cultures. The scaffold-free 3D culture efficiently preserves DPSCs intrinsic properties and functionality by maintaining them in the state close to the native tissues. The scaffold free 3D culture methods allow easy collection of a large number of multicellular spheroids of DPSCs and therefore, this can be adopted as a feasible and efficient method of generating robust spheroids for various in-vitro and in-vivo therapeutic applications.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prakshi Sharma
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vidya Rattan
- Unit of oral and maxillofacial surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
5
|
Dong L, Duan X, Bin L, Wang J, Gao Q, Sun X, Xu Y. Evaluation of Fourier transform infrared (FTIR) spectroscopy with multivariate analysis as a novel diagnostic tool for lymph node metastasis in gastric cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122209. [PMID: 36512961 DOI: 10.1016/j.saa.2022.122209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a vibration spectroscopy that uses infrared radiation to vibrate to absorb the molecular bonds in its absorbed sample. The main purpose of this study was to evaluate FTIR spectroscopy as a novel diagnostic tool for lymph node metastasis (LNM) of gastric cancer. We collected 160 fresh non-metastatic and metastatic lymph nodes (80 each) from 60 patients with gastric cancer for spectral analysis. FTIR spectra of lymph node (LN) samples were obtained in the wavenumber range of 4000 cm-1 to 900 cm-1. We calculated the changes in the ratio of spectral intensity (/ I1460). Principal component analysis (PCA) and Fisher's discriminant analysis (FDA) were used to distinguish malignant from normal LN. Four significant bands at 1080 cm-1, 1640 cm-1, 1740 cm-1 and 3260 cm-1 separated metastatic and non-metastatic LN spectra into two distinct groups by PCA.T-tests showed that, along with the relative intensity ratios (I1080/I1460, I1640/I1460, I3260/I1460, I1740/I1460), these band ratios were also able to differentiate between malignant and benign LN spectra. Six parameters (P1080 cm-1, P1300 cm-1, I1080/I1460, I1640/I1460, I3260/I1460, I1740/I1460) were selected as independent factors to set up discriminant functions. The sensitivity of FTIR spectroscopy in diagnosing LNM was 95 % by discriminant analysis. Our study suggested that FTIR spectroscopy can be a useful tool to examine LNM with high sensitivity and specificity for LNM diagnosis. Therefore it can be used in clinical practice as a non-invasive method.
Collapse
Affiliation(s)
- Liu Dong
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Liu Bin
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Jianhua Wang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Qiuying Gao
- Department of Haematology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yizhuang Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Hsieh PH, Phal Y, Prasanth KV, Bhargava R. Cell Phase Identification in a Three-Dimensional Engineered Tumor Model by Infrared Spectroscopic Imaging. Anal Chem 2023; 95:3349-3357. [PMID: 36574385 PMCID: PMC10214899 DOI: 10.1021/acs.analchem.2c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle progression plays a vital role in regulating proliferation, metabolism, and apoptosis. Three-dimensional (3D) cell cultures have emerged as an important class of in vitro disease models, and incorporating the variation occurring from cell cycle progression in these systems is critical. Here, we report the use of Fourier transform infrared (FT-IR) spectroscopic imaging to identify subtle biochemical changes within cells, indicative of the G1/S and G2/M phases of the cell cycle. Following previous studies, we first synchronized samples from two-dimensional (2D) cell cultures, confirmed their states by flow cytometry and DNA quantification, and recorded spectra. We determined two critical wavenumbers (1059 and 1219 cm-1) as spectral indicators of the cell cycle for a set of isogenic breast cancer cell lines (MCF10AT series). These two simple spectral markers were then applied to distinguish cell cycle stages in a 3D cell culture model using four cell lines that represent the main stages of cancer progression from normal cells to metastatic disease. Temporal dependence of spectral biomarkers during acini maturation validated the hypothesis that the cells are more proliferative in the early stages of acini development; later stages of the culture showed stability in the overall composition but unique spatial differences in cells in the two phases. Altogether, this study presents a computational and quantitative approach for cell phase analysis in tissue-like 3D structures without any biomarker staining and provides a means to characterize the impact of the cell cycle on 3D biological systems and disease diagnostic studies using IR imaging.
Collapse
Affiliation(s)
- Pei-Hsuan Hsieh
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yamuna Phal
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Kaimuangpak K, Tamprasit K, Thumanu K, Weerapreeyakul N. Extracellular vesicles derived from microgreens of Raphanus sativus L. var. caudatus Alef contain bioactive macromolecules and inhibit HCT116 cells proliferation. Sci Rep 2022; 12:15686. [PMID: 36127415 PMCID: PMC9489735 DOI: 10.1038/s41598-022-19950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles released from cells, containing natural cargos. Microgreens of Raphanus sativus L. var. caudatus Alef were used in this study as the source of EVs. EVs were isolated by differential centrifugation. The physical properties were determined by dynamic light scattering (DLS) and electron microscopy. The biological and chemical composition were studied by Fourier-transform infrared (FTIR) microspectroscopy and high-performance liquid chromatography analysis, respectively. EVs had a median size of 227.17 and 234.90 ± 23.30 nm determined by electron microscopy and DLS, respectively with a polydispersity index of 0.293 ± 0.019. Electron microscopy indicated the intact morphology and confirmed the size. The FTIR spectra revealed that EVs are composed of proteins as the most abundant macromolecules. Using a curve-fitting analysis, β-pleated sheets were the predominant secondary structure. Notably, the micromolecular biomarkers were not detected. EVs exerted anti-cancer activity on HCT116 colon cancer over Vero normal cells with an IC50 of 448.98 µg/ml and a selectivity index of > 2.23. To conclude, EVs could be successfully prepared with a simple and effective isolation method to contain nano-sized macromolecules possessing anti-cancer activity.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the Program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kawintra Tamprasit
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittrapap Road, Amphoe Muang, Khon Kaen, 40002, Thailand.
| |
Collapse
|
8
|
Compact and very high dose-rate plasma focus radiation sources for medical applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Magalhães S, Almeida I, Pereira CD, Rebelo S, Goodfellow BJ, Nunes A. The Long-Term Culture of Human Fibroblasts Reveals a Spectroscopic Signature of Senescence. Int J Mol Sci 2022; 23:ijms23105830. [PMID: 35628639 PMCID: PMC9146002 DOI: 10.3390/ijms23105830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular β-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Idália Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Cátia D. Pereira
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Sandra Rebelo
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Brian J. Goodfellow
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Alexandra Nunes
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- Correspondence: ; Tel.: +351-234-324-435
| |
Collapse
|
10
|
Route of intracellular uptake and cytotoxicity of sesamol, sesamin, and sesamolin in human melanoma SK-MEL-2 cells. Biomed Pharmacother 2021; 146:112528. [PMID: 34906777 DOI: 10.1016/j.biopha.2021.112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The intracellular uptake concentration determines drug absorption, drug activity, and toxicity. Sesamol, sesamin, and sesamolin are promising bioactive components from Sesame indicum L. Their respective intracellular uptake pathway and cytotoxicity were evaluated using melanoma and non-cancerous cells. Quantitative structure-activity relationship (QSAR) models were built to identify the molecular features affecting drug uptake in cells. The respective intracellular uptake pathway for sesamol vs. sesamin and sesamolin was carrier-mediated vs. passive transport. Topological polar surface area (PSA) and 2D autocorrections increase the intracellular concentration (C/M ratio) of these compounds. Sesamol has the lowest C/M ratio compared to sesamin and sesamolin, but only sesamol inhibits the cell viability of melanoma and provides an inhibition concentration at 50% (IC50) against melanoma cells. The slightly aqueous solubility of sesamin and sesamolin, therefore, limits testing of their cytotoxicity. In conclusion, sesamol has the potential to inhibit melanoma cell growth, but requires improvement of the C/M ratio to increase its physicochemical properties. Thus, in order to investigate the cytotoxicity of sesamin and sesamolin against melanoma cells a solubility enhancer is needed.
Collapse
|
11
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
12
|
Gündel B, Liu X, Löhr M, Heuchel R. Pancreatic Ductal Adenocarcinoma: Preclinical in vitro and ex vivo Models. Front Cell Dev Biol 2021; 9:741162. [PMID: 34746135 PMCID: PMC8569794 DOI: 10.3389/fcell.2021.741162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.
Collapse
Affiliation(s)
- Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
- Department of Upper GI, C1:77, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
13
|
Benelli R, Zocchi MR, Poggi A. Three-Dimensional (3D) Culture Models in Cancer Investigation, Drug Testing and Immune Response Evaluation. Int J Mol Sci 2020; 22:ijms22010150. [PMID: 33375697 PMCID: PMC7795188 DOI: 10.3390/ijms22010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Preclinical models for the definition of anti-cancer drug safety and efficacy are constantly evolving [...].
Collapse
Affiliation(s)
- Roberto Benelli
- Unit of MolecularOncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Alessandro Poggi
- Unit of MolecularOncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
- Correspondence: ; Tel.: +39-010-555-8433
| |
Collapse
|