1
|
Zhao Y, Wei J, Cheng P, Ma J, Liu B, Xiong M, Gao T, Yao J, Sun T, Li Z. The involvement of TRPV1 in the apoptosis of spermatogenic cells in the testis of mice with cryptorchidism. Cell Death Discov 2025; 11:135. [PMID: 40180900 PMCID: PMC11968804 DOI: 10.1038/s41420-025-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Cryptorchidism is associated with an increased risk of male infertility and testicular cancer. Persistent exposure to high temperature in cryptorchidism can lead to the apoptosis of spermatogenic cells. Transient receptor potential vanilloid 1 (TRPV1), a thermosensitive cation channel, has been found to have differential effects on various apoptosis processes. However, whether TRPV1 is involved in spermatogenic cell apoptosis induced by cryptorchidism remains unclear. Herein, we first observed the expression pattern of TRPV1 in the testes of mice with experimental cryptorchidism, and then investigated the role and mechanism of TRPV1 in spermatogenic cell apoptosis by using Trpv1-/- mice. The results showed that TRPV1 was highly expressed on the membrane of spermatocytes in mouse testis, and the expression increased significantly in the testis of mice with experimental cryptorchidism. After the operation, Trpv1-/- mice exhibited less reproductive damage and fewer spermatogenic cell apoptosis compared to the wild-type (WT) mice. Transcriptome sequencing revealed that the expression of apoptosis-related genes (Capn1, Capn2, Bax, Aifm1, Caspase 3, Map3k5, Itpr1 and Fas) was down-regulated in spermatocytes of cryptorchid Trpv1-/- mice. Our results suggest that TRPV1 promotes the apoptosis of spermatocytes in cryptorchid mice by regulating the expression of apoptosis-related genes.
Collapse
Affiliation(s)
- Yanqiu Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jinhua Wei
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Junxian Ma
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Bo Liu
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
- The Air Force Hospital of Central Theater of PLA, Datong, China
| | - Mingxiang Xiong
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Ting Gao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jingqi Yao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Tianchen Sun
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China.
| |
Collapse
|
2
|
Yu E, Oh SW, Park SH, Kwon K, Han SB, Kang SH, Lee JH, Ha H, Yoon D, Jung E, Song M, Cho JY, Lee J. The Pigmentation of Blue Light Is Mediated by Both Melanogenesis Activation and Autophagy Inhibition through OPN3-TRPV1. J Invest Dermatol 2025; 145:908-918.e6. [PMID: 39241981 DOI: 10.1016/j.jid.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/09/2024]
Abstract
Blue light, a high-energy radiation in the visible light spectrum, was recently reported to induce skin pigmentation. In this study, we investigated the involvement of TRPV1-mediated signaling along with OPN3 in blue light-induced melanogenesis as well as its signaling pathway. Operating downstream target of OPN3 in blue light-induced melanogenesis, blue light activated TRPV1 and upregulated its expression, resulting in calcium influx. Calcium ion induced the activation of calcium/calmodulin-dependent protein kinase II and MAPK. It also downregulated clusterin expression, leading to the nuclear translocation of PAX3, ultimately affecting melanin synthesis. In addition, blue light interfered with autophagy-mediated regulation of melanosomes by decreasing not only the interaction between clusterin and LC3B but the expression of activating transcription factor family. These findings demonstrate that the pigmenting effects of blue light are mediated by calcium/calmodulin-dependent protein kinase II- and MAPK-mediated signaling as well as clusterin-dependent inhibition of autophagy through OPN3-TRPV1-calcium influx, suggesting, to our knowledge, a previously unreported signaling pathway through which blue light regulates melanocyte biology. Furthermore, these results suggest that TRPV1 and clusterin could be potential therapeutic targets for blue light-induced pigmentation due to prolonged exposure to blue light.
Collapse
Affiliation(s)
- Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City, Korea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Su Hyun Kang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Jung Hyun Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Donghoon Yoon
- Myeloma Center, Department of Internal Medicine, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seongnam, Korea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
3
|
Zhang M, Wang Z, Liu S, Li Y, Gong Y, Liu M. New options for targeting TRPV1 receptors for cancer treatment: odorous Chinese herbal medicine. Front Oncol 2025; 15:1488289. [PMID: 40007993 PMCID: PMC11850239 DOI: 10.3389/fonc.2025.1488289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Vanilloid1 (TRPV1), a subfamily of transient receptor channels, is one of the non-selective calcium channels, which is a bridge between cellular response and extracellular environmental networks, and is involved in a variety of pathophysiological processes. It is also involved in the process of cancer occurrence and progression, and researchers are revealing its role in cancer. In this paper, we review the expression and significance of TRPV1 receptor in various cancer cell types, the role of TRPV1 in the apoptosis-proliferation balance, cancer cell invasion and metastasis, and tumor micro-environment, with emphasis on the mechanisms by which TRPV1 receptor mediates inflammatory response, immune system, and thus regulates cancer. We discussed the latest directions and current challenges of TRPV1 receptor-targeting therapy for cancer, and summarized the odorous traditional herbs that modulate TRPV1 receptors, with a view to developing anti-tumor drugs targeting TRPV1 receptors in the future.
Collapse
Affiliation(s)
- Minghui Zhang
- Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zongao Wang
- Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shaojun Liu
- Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yuxuan Li
- Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yanting Gong
- Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Min Liu
- Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
4
|
Coluzzi F, Scerpa MS, Alessandri E, Romualdi P, Rocco M. Role of TRP Channels in Cancer-Induced Bone Pain. Int J Mol Sci 2025; 26:1229. [PMID: 39940997 PMCID: PMC11818569 DOI: 10.3390/ijms26031229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The burden of cancer is growing in almost every country. Bone metastases significantly affect the prognosis and lead to an increase in mortality and morbidity. The management of cancer-induced bone pain (CIBP) still shows various unmet needs. Opioid use is burdened by a number of possible side effects. Moreover, recent progresses in cancer treatment significantly increased the life expectancy of cancer patients, even those with metastatic disease. In this narrative review, we reported the main findings regarding TRP channel function in cancer pain models. TRP cation channels play a key role in different functions of cancer cells, including the regulation of their potential for metastasization, and are the main channels involved in the pathways of pain perception, through peripheral and central effects. Genetic deletion decreased pain sensitivity following tumour cell inoculation. Preclinical data suggest a potential role for modulators of some TRP channels, such as TRPV1, TRPA1, TRPM7 and TRPM8. Clinical results are still scarce; however, the physiological role in modulating bone remodelling and the involvement of TRP channels in preclinical models of bone cancer pain have garnered interest as areas of research in the last few years, as innovative analgesic strategies that may overcome the long-term side effects of opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Elisa Alessandri
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Monica Rocco
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
5
|
Zhang H, Jiang J, Chen X, Zhu F, Fu F, Chen A, Fu L, Mao D. Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats. Cancer Biol Ther 2024; 25:2432098. [PMID: 39587385 PMCID: PMC11601056 DOI: 10.1080/15384047.2024.2432098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Jingwen Jiang
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Xuewu Chen
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Fengting Zhu
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Fangfang Fu
- Department of Oncology, Affiliated Hainan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Haikou, Hainan, China
| | - Aiying Chen
- Department of Oncology, Affiliated Hainan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Haikou, Hainan, China
| | - Lei Fu
- Department of Dermatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Hainan Hospital, Haikou, Hainan, China
| | - Dan Mao
- Department of Integrated Traditional Chinese and Western Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Mohanta S, Das NK, Goswami C. Taxol-treatment alters endogenous TRPV1 expression and mitochondrial membrane potential in mesenchymal stem cells: Relevant in chemotherapy-induced pathophysiology. Biochem Biophys Res Commun 2024; 737:150498. [PMID: 39128224 DOI: 10.1016/j.bbrc.2024.150498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Microtubule-based chemotherapeutics, primarily Taxane-derived agents are still used as the major live-saving agents, yet have several side effects including serious loss of immune cells, bone density etc. which lowers the quality of life. This imposes the need to understand the effects of these agents on Mesenchymal Stem Cells (MSCs) in details. In this work we demonstrate that Taxol and Nocodazole affects the endogenous expression of TRPV1, a non-selective cation channel in MSCs. These agents also affect the status of polymerized Actin as well as Tyrosinated-tubulin, basal cytosolic Ca2+ and mitochondrial membrane potential (ΔΨm). Notably, pharmacological modulation of TRPV1 by Capsaicin or Capsazepine can also alter the above-mentioned parameters in a context-dependent manner. We suggest that endogenous expression of TRPV1 and pharmacological modulation of TRPV1 can be utilized to rescue some of these parameters effectively. These findings may have significance in the treatments and strategies with Microtubule-based chemotherapeutics and stem-cell based therapy.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Khurda, Odisha, 752050, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
7
|
Lin K, Wang Z, Wang E, Zhang X, Liu X, Feng F, Yu X, Yi G, Wang Y. Targeting TRPV1 signaling: Galangin improves ethanol-induced gastric mucosal injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118605. [PMID: 39047882 DOI: 10.1016/j.jep.2024.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Galangin, a bioactive compound extracted from Alpinia officinarum Hance (Zingiberaceae), a plant with significant ethnopharmacological importance, has been used for thousands of years as a spice, condiment, and medicinal agent for various conditions, including gastrointestinal disorders. Although there is evidence suggesting its potential to improve gastric ulcers, the molecular mechanisms underlying its anti-ulcer properties are not fully understood. OBJECTIVE of the Study: This study aimed to investigate the effects of galangin on ethanol-induced acute gastric mucosal injury (AGMI) in mice and elucidate its molecular mechanisms. MATERIALS AND METHODS Sixty BALB/c mice were randomly assigned into two main groups: a normal control group (n = 10) and an ethanol-induced group (n = 50). After establishing the AGMI model in mice using a combination of 40% ethanol and anhydrous ethanol, the ethanol-induced group was further subdivided into five subgroups (n = 10): an omeprazole control group (20 mg/kg), an untreated ethanol group, and three treatment groups receiving high-dose (50 mg/kg) or low-dose (25 mg/kg) galangin or capsazepine (CPZ, 2 mg/kg). The protective effects of galangin were evaluated through mucosal injury indices, hematoxylin and eosin staining, and quantification of inflammatory markers (IL-1β, IL-6, IL-8, and TNF-α). Oxidative stress levels and matrix metalloproteinase activity were measured using specific assay kits. Molecular docking was conducted to assess the binding affinity of galangin to key proteins within the transient receptor potential vanilloid 1 (TRPV1) pathway. Real-time fluorescence quantitative PCR (qPCR) was used to determine mRNA expression levels of TRPV1, calmodulin (CaM), substance P (SP), and CGRP in gastric tissues. Protein expression levels of TRPV1, nerve growth factor (NGF), tropomyosin receptor kinase A (TRKA), transforming growth factor beta (TGF-β), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) were assessed through Western blot analysis. In cellular experiments, Culture of Human Gastric Epithelial Cells (GES-1) were treated with various concentrations of galangin after 7% ethanol induction. Cell proliferation, apoptosis, and migration were evaluated using Hoechst 33258 staining and transwell migration assays. TRPV1 protein expression was detected using immunofluorescence, and the expression levels of Bcl-2, BCL2-Associated X (BAX), and Caspase-3 were quantified by qPCR. Additionally, specific probe kits were used to measure intracellular calcium ions (Ca2+) and mitochondrial membrane potential. RESULTS The findings indicate that galangin significantly improved mucosal pathology by reducing ulcer indices and inflammatory levels, while enhancing superoxide dismutase (SOD) activity and decreasing malondialdehyde (MDA) concentration. Galangin also reduced matrix metalloproteinase-2 (MMP-2), m metalloproteinase-9 (MMP-9) levels, promoting mucosal repair. At the cellular level, galangin decreased intracellular calcium ion concentration and mitigated the decline in mitochondrial membrane potential, enhance the restoration of mucosal cells, increased migration and proliferation, and reduced apoptosis. Molecularly, galangin demonstrated favorable binding to TRPV1, NGF, TRKA, TGF-β, COX-2, and NF-κB, and reversed the elevated expression of these proteins. Additionally, galangin downregulated the mRNA expression of TRPV1, CaM, SP, CGRP, BAX, and Caspase-3 in gastric tissues/cells, while upregulating Bcl-2 mRNA expression. CONCLUSION Galangin mitigates AGMI by inhibiting the overactivation of the TRPV1 pathway, thereby blocking aberrant signal transduction. This study suggests that galangin has therapeutic potential against ethanol-induced AGMI and may be a viable alternative for the treatment of alcohol-induced gastric mucosal injuries.
Collapse
Affiliation(s)
- Kaiwen Lin
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Zhongtao Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Erhao Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xueer Zhang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xiaofei Liu
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Faming Feng
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xiaodan Yu
- Public Research Center of Hainan Medical University, Haikou, 571199, China
| | - Guohui Yi
- Public Research Center of Hainan Medical University, Haikou, 571199, China.
| | - Yan Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China.
| |
Collapse
|
8
|
Li H, Zhang Y, Chen Y, Zhu R, Zou W, Chen H, Hu J, Feng S, Zhong Y, Lu X. MUC1‑ND interacts with TRPV1 to promote corneal epithelial cell proliferation in diabetic dry eye mice by partly activating the AKT signaling pathway. Mol Med Rep 2024; 30:213. [PMID: 39370807 PMCID: PMC11450431 DOI: 10.3892/mmr.2024.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Although both mucin1 (MUC1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) have been reported to be associated with dry eye (DE) disease, whether they interact and their regulatory roles in diabetic DE disease are unknown. Diabetic DE model mice were generated by streptozotocin induction and assessed by corneal fluorescein staining, tear ferning (TF) tests, phenol red thread tests, hematoxylin and eosin staining of corneal sections and periodic acid Schiff staining of conjunctival sections. Cell proliferation was measured by CCK8 assay. Western blotting was performed to measure protein expression. Primary mouse corneal epithelial cells (MCECs) were cultured after enzymatic digestion. Immunofluorescence staining of MCECs and frozen corneal sections was conducted to assess protein expression and colocalization. Coimmunoprecipitation was performed to detect protein‑protein interactions. It was found that, compared with control mice, diabetic DE mice exhibited increased corneal epithelial defects, reduced tear production, poorer TF pattern grades and impaired corneal and conjunctival tissues. In vivo and in vitro experiments showed that hyperglycemia impaired cell proliferation, accompanied by decreased levels of the MUC1 extracellular domain (MUC1‑ND) and TRPV1. Additionally, it was found that capsazepine (a TRPV1 antagonist) inhibited the proliferation of MCECs. Notably, MUC1‑ND was shown to interact with the TRPV1 protein in the control group but not in the diabetic DE group. It was also found that the AKT signaling pathway was attenuated in the diabetic DE mice and downstream of TRPV1. MUC1‑ND interacted with TRPV1, partly activating the AKT signaling pathway to promote MCEC proliferation. The present study found that the interaction of MUC1‑ND with TRPV1 promotes MCEC proliferation by partly activating the AKT signaling pathway, providing new insight into the pathogenesis of corneal epithelial dysfunction in diabetic DE disease.
Collapse
Affiliation(s)
- Haiqiong Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yu Zhang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yuting Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Rong Zhu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Weikang Zou
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Jia Hu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
9
|
Saha P, Sharma SS. RNA Interference Unleashed: Current Perspective of Small Interfering RNA (siRNA) Therapeutics in the Treatment of Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:2951-2970. [PMID: 39416962 PMCID: PMC11475279 DOI: 10.1021/acsptsci.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic pain (NP) is one of the debilitating pain phenotypes that leads to the progressive degeneration of the central as well as peripheral nervous system. NP is often associated with hyperalgesia, allodynia, paresthesia, tingling, and burning sensations leading to disability, motor dysfunction, and compromised psychological state of the patients. Most of the conventional pharmacological agents are unable to improve the devastating conditions of pain because of their limited efficacy, undesirable side effects, and multifaceted pathophysiology of the diseased condition. A rapid rise in new cases of NP warrants further research for identifying the potential novel therapeutic modalities for treating NP. Recently, small interfering RNA (siRNA) approach has shown therapeutic potential in many disease conditions including NP. Delivery of siRNAs led to potential and selective downregulation of target mRNA and abolished the pain-related behaviors/pathophysiological pain response. The crucial role of siRNA in the treatment of NP by considering all of the pathways associated with NP that could be managed by siRNA therapeutics has been discussed. However, their therapeutic use is limited by several hurdles such as instability in systemic circulation due to their negative charge and membrane impermeability, off-target effects, immunogenicity, and inability to reach the intended site of action. This review also emphasizes several strategies and techniques to overcome these hurdles for translating these therapeutic siRNAs from bench to bedside by opening a new avenue for obtaining a potential therapeutic approach for treating NP.
Collapse
Affiliation(s)
- Priya Saha
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Shyam S. Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
10
|
Yang Y, Gu X, Weng W, Cheng J, Huang O, Pan SJ, Li Y. SUMOylation-induced membrane localization of TRPV1 suppresses proliferation and migration in gastric cancer cells. Cell Commun Signal 2024; 22:465. [PMID: 39350261 PMCID: PMC11441086 DOI: 10.1186/s12964-024-01850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca2+ permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca2+ influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.
Collapse
Affiliation(s)
- Yang Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaokun Gu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Weiji Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jinke Cheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200020, China.
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200020, China.
| | - Yong Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
Zhou L, Chen L, Li T, Wang L, Lin S, Zhao Y, Wu S, Jin T. Cell-free adipose tissue extracts as a novel treatment for rosacea by downregulating TRPV1. Sci Rep 2024; 14:21759. [PMID: 39294294 PMCID: PMC11411087 DOI: 10.1038/s41598-024-72593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Rosacea is a chronic inflammatory skin disease that typically affects the central facial area. Its main clinical symptoms include paroxysmal flushing, telangiectasia, and non-temporary erythema. Cell-free adipose tissue extracts (ATEs) are liquid components extracted from human adipose tissue that contain large amounts of growth factors. Despite the scar-reducing, anti-aging, and wound-healing effects of ATEs, the efficacy of ATEs in rosacea remains unknown. Therefore, the anti-rosacea effects of ATEs were investigated in human cathelicidin peptide (LL-37) induced rosacea mice and capsaicin (CAP)-stimulated HaCaT keratinocytes. In vitro, ATEs significantly reduced TRPV1 expression, intracellular calcium ions influx and the release of inflammatory factors (such as KLK5, IL-6, IL-8 and TNF-α) after intervening in CAP-stimulated cells. The in vivo results revealed that ATEs alleviated rosacea symptoms, such as erythema score, erythema area, transepidermal water loss, abnormal epidermal thickness, mast cell infiltration and telangiectasia upon downregulating TRPV1 and CD31 expression. Moreover, the up-regulated TRPV1 protein expression was also recovered by ATEs administration in vivo and in vitro. Meanwhile, ATEs demonstrated good biocompatibility. In summary, ATEs could be a potential therapeutic agent for rosacea by regulating inflammation and alleviating telangiectasia.
Collapse
Affiliation(s)
- Liuyi Zhou
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lulu Chen
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Li
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lu Wang
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shiqi Lin
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye Zhao
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sufan Wu
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Tingting Jin
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Besser E, Gelfand A, Procaccia S, Berman P, Meiri D. Cannabinoid combination targets NOTCH1-mutated T-cell acute lymphoblastic leukemia through the integrated stress response pathway. eLife 2024; 12:RP90854. [PMID: 39258755 PMCID: PMC11390110 DOI: 10.7554/elife.90854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.
Collapse
Affiliation(s)
- Elazar Besser
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Anat Gelfand
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Procaccia
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Paula Berman
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
13
|
Gillham SH, Cole PL, Viggars MR, Nolan AH, Close GL, Owens DJ. Comparative transcriptomics of broad-spectrum and synthetic cannabidiol treated C2C12 skeletal myotubes. Physiol Rep 2024; 12:e70059. [PMID: 39289171 PMCID: PMC11407902 DOI: 10.14814/phy2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Cannabidiol (CBD) is widely used in sports for recovery, pain management, and sleep improvement, yet its effects on muscle are not well understood. This study aimed to determine the transcriptional response of murine skeletal muscle myotubes to broad-spectrum CBD and synthetic CBD (sCBD). Differentiated C2C12 myotubes were treated with 10 μM CBD, sCBD, or vehicle control (DMSO) for 24 h before RNA extraction. Poly-A tail-enriched mRNA libraries were constructed and sequenced using 2 × 50 bp paired-end sequencing. CBD and sCBD treatment induced 4489 and 1979 differentially expressed genes (DEGs; p < 0.001, FDR step-up <0.05), respectively, with common upregulation of 857 genes and common downregulation of 648 genes. Common upregulated DEGs were associated with "response to unfolded protein," "cell redox homeostasis," "endoplasmic reticulum stress," "oxidative stress," and "cellular response to hypoxia." Common downregulated DEGs were linked to "sarcomere organization," "skeletal muscle tissue development," "regulation of muscle contraction," and "muscle contraction." CBD treatment induced unique DEGs compared to sCBD. The data indicate CBD may induce mild cellular stress, activating pathways associated with altered redox balance, unfolded protein response, and endoplasmic reticulum stress. We hypothesize that CBD interacts with muscle and may elicit a "mitohormetic" effect that warrants further investigation.
Collapse
Affiliation(s)
- Scott H. Gillham
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Paige L. Cole
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Mark R. Viggars
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - Andy H. Nolan
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Graeme L. Close
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Daniel J. Owens
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
14
|
Liu M, Guo J, Lu J, Chen Y, Deng X, Zhang S, Guan S. Capsaicin alleviates acute alcohol-induced pyroptosis by activating ESCRT-III-dependent cell membrane repair in hepatocytes. Food Funct 2024; 15:8395-8407. [PMID: 39036891 DOI: 10.1039/d4fo00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Capsaicin (CAP), the active ingredient in hot chilli peppers, has anti-inflammatory and hepatoprotection effects. Acute alcoholic liver injury (AALI) is liver damage caused by acute alcohol abuse, which can lead to severe liver lesions and even be life-threatening. Pyroptosis is inflammation-related programmed cell death characterized by membrane rupture and plays a key role in AALI. The endosomal sorting complexes required for transport (ESCRT) proteins can gather at damaged areas of the membrane to facilitate the process of sealing the membrane. In this study, we found that CAP could relieve acute alcohol-induced pyroptosis of hepatocytes in vitro and in vivo. Mechanically, we found that CAP could alleviate acute alcohol-induced pyroptosis by activating the ESCRT-III-dependent membrane repair machinery. Furthermore, the data showed that CAP induced ESCRT-III protein expression by activating transient receptor potential vanilloid member 1 (TRPV1) on the cell membrane and Ca2+ influx. TRPV1 inhibitor capsazepine (CPZ) inhibited the relief effect of CAP on acute alcohol-induced pyroptosis. Overall, these results showed that CAP might activate ESCRT-III-dependent membrane repair machinery through Ca2+ influx, which is regulated by TRPV1 calcium channels, therefore mitigating acute alcohol-induced pyroptosis. Our research provides a new perspective on a naturally active food product to promote cell repair and relieve AALI.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China.
| | - Jiakang Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China.
| | - Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China.
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Shengzhuo Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China.
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China.
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Yang CQ, Lai CC, Pan JC, Gao J, Shen BY, Ru Y, Shen X, Liu Y, Shen NN, Li BW, Wang YG, Gao Y. Maintaining calcium homeostasis as a strategy to alleviate nephrotoxicity caused by evodiamine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116563. [PMID: 38878560 DOI: 10.1016/j.ecoenv.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.
Collapse
Affiliation(s)
- Chun-Qi Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Cheng-Cai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jin-Chao Pan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bao-Ying Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yufu Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning-Ning Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Wei Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
16
|
Zhou XY, Zhao QW, Li Z, Liu XY, Wang Y, Wu FH, Zhao M, Zhang YM, Zhao G, Yang GH, Guo XH. Capsaicin exerts synergistic pro-apoptotic effects with cisplatin in TSCC through the calpain pathway via TRPV1. J Cancer 2024; 15:4801-4817. [PMID: 39132151 PMCID: PMC11310884 DOI: 10.7150/jca.98075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 08/13/2024] Open
Abstract
Capsaicin (CAP) exerts significant anti-tumor effects on a variety of tumors, with low intrinsic toxicity. Cisplatin (DDP) is currently the first-line drug for the treatment of oral cancer; however, its clinical efficacy is impeded by chemoresistance and negligible side effects. Whether the combined use of CAP and DDP has a synergistic antitumor effect on tongue squamous cell carcinoma (TSCC) cells and its underlying mechanisms remains unclear. The present study revealed that CAP reduced the activity of TSCC cells in a dose- and time-dependent manner. We also observed changes in the mitochondrial functional structure of TSCC cells, along with the induction of mitochondrial apoptosis. Moreover, when CAP was combined with DDP, a synergistic cytotoxic effect on TSCC cells was observed, which had a significant impact on inducing apoptosis, inhibiting proliferation, and disrupting the mitochondrial membrane potential in TSCC cells compared to the single-drug treatment and control groups. These effects are associated with TRPV1, a high-affinity CAP receptor. The combined use of CAP and DDP can activate the TRPV1 receptor, resulting in intracellular Ca2+ overload and activation of the calpain pathway, ultimately leading to mitochondrial apoptosis. This potential mechanism was validated in TSCC xenograft models. In conclusion, our findings clearly demonstrate that CAP exerts synergistic pro-apoptotic effects with DDP in TSCC through the calpain pathway mediated by TRPV1. Thus, CAP can be considered an effective adjuvant drug for DDP in the treatment of TSCC.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi-Wei Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhuang Li
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xia-Yang Liu
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yu Wang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Feng-Hua Wu
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Min Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Yan-Mei Zhang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Gang Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China
| | - Xiao-Hong Guo
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| |
Collapse
|
17
|
Gao L, Wang Q, Li MY, Zhang MM, Wang B, Dong TW, Wei PF, Li M. A Mechanism for the Treatment of Cardiovascular and Renal Disease: TRPV1 and TRPA1. J Cardiovasc Pharmacol 2024; 84:10-17. [PMID: 38547512 DOI: 10.1097/fjc.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/24/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. CVD and kidney disease are closely related, with kidney injury increasing CVD mortality. The pathogenesis of cardiovascular and renal diseases involves complex and diverse interactions between multiple extracellular and intracellular signaling molecules, among which transient receptor potential vanilloid 1 (TRPV1)/transient receptor potential ankyrin 1 (TRPA1) channels have received increasing attention. TRPV1 belongs to the vanilloid receptor subtype family of transient receptor potential ion channels, and TRPA1 belongs to the transient receptor potential channel superfamily. TRPV1/TRPA1 are jointly involved in the management of cardiovascular and renal diseases and play important roles in regulating vascular tension, promoting angiogenesis, antifibrosis, anti-inflammation, and antioxidation. The mechanism of TRPV1/TRPA1 is mainly related to regulation of intracellular calcium influx and release of nitric oxide and calcitonin gene-related peptide. Therefore, this study takes the TRPV1/TRPA1 channel as the research object, analyzes and summarizes the process and mechanism of TRPV1/TRPA1 affecting cardiovascular and renal diseases, and lays a foundation for the treatment of cardiorenal diseases.
Collapse
Affiliation(s)
- Lu Gao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yan Z, Huang H, Wang Q, Kong Y, Liu X. Function and mechanism of action of the TRPV1 channel in the development of triple-negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:957-962. [PMID: 38734935 PMCID: PMC11322878 DOI: 10.3724/abbs.2024068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/25/2024] [Indexed: 05/13/2024] Open
Abstract
Transient receptor potential channel subfamily vanilloid 1 (TRPV1) is a member of the transient receptor potential family of nonselective cationic transmembrane channel proteins that are involved in the regulation of calcium homeostasis. It is expressed in various tumor types and has been implicated in the regulation of cancer growth, metastasis, apoptosis, and cancer-related pain. TRPV1 is highly expressed in triple-negative breast cancer (TNBC), and both its agonists and antagonists may exert anti-cancer effects. In this review, we provide an overview of the effect of TRPV1 on TNBC development and its influence on immunotherapy in an attempt to facilitate the development of future treatment strategies.
Collapse
Affiliation(s)
- Ziling Yan
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Haihui Huang
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Qianqian Wang
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Yanjie Kong
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Xia Liu
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| |
Collapse
|
19
|
Rumpa MM, Maier C. TRPV1-Dependent Antiproliferative Activity of Dioecious Maclura pomifera Extracts in Estrogen Receptor-Positive Breast Cancer Cell Lines Involves Multiple Apoptotic Pathways. Int J Mol Sci 2024; 25:5258. [PMID: 38791297 PMCID: PMC11120667 DOI: 10.3390/ijms25105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, breast cancer is a significant cause of mortality. Recent research focused on identifying compounds regulating the transient receptor potential vanilloid 1 (TRPV1) ion channel activity for the possibility of developing cancer therapeutics. In this study, the antiproliferative properties and mechanisms of action through TRPV1 of Maclura pomifera, a dioecious tree native to the south-central USA, have been investigated. Male and female extracts of spring branch tissues and leaves (500 µg/mL) significantly reduced the viability of MCF-7 and T47D cells by 75-80%. M. pomifera extracts induced apoptosis by triggering intracellular calcium overload via TRPV1. Blocking TRPV1 with the capsazepine antagonist and pretreating cells with the BAPTA-AM chelator boosted cell viability, revealing that M. pomifera phytochemicals activate TRPV1. Both male and female M. pomifera extracts initiated apoptosis through multiple pathways, the mitochondrial, ERK-induced, and endoplasmic reticulum-stress-mediated apoptotic pathways, demonstrated by the expression of activated caspase 3, caspase 9, caspase 8, FADD, FAS, ATF4, and CHOP, the overexpression of phosphorylated PERK and ERK proteins, and the reduction of BCL-2 levels. In addition, AKT and pAKT protein expressions were reduced in female M. pomifera-treated cells, revealing that female plant extract also inhibits PI3K/Akt signaling pathways. These results suggest that phytochemicals in M. pomifera extracts could be promising for developing breast cancer therapeutics.
Collapse
Affiliation(s)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA;
| |
Collapse
|
20
|
Shahcheraghi SH, Alimardani M, Lotfi M, Lotfi M, Uversky VN, Guetchueng ST, Palakurthi SS, Charbe NB, Hromić-Jahjefendić A, Aljabali AAA, Gadewar MM, Malik S, Goyal R, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol Res Pract 2024; 257:155285. [PMID: 38653089 DOI: 10.1016/j.prp.2024.155285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Stephanie Tamdem Guetchueng
- Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, PO Box 6163, Yaoundé, Cameroon
| | - Sushesh Shrivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School Of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Manoj M Gadewar
- Department of Pharmacology, School of medical and allied sciences, K.R. Mangalam University, Gurgaon, Haryana 122103, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
21
|
Pizzano M, Vereertbrugghen A, Cernutto A, Sabbione F, Keitelman IA, Shiromizu CM, Vera Aguilar D, Fuentes F, Giordano MN, Trevani AS, Galletti JG. Transient Receptor Potential Vanilloid-1 Channels Facilitate Axonal Degeneration of Corneal Sensory Nerves in Dry Eye. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:810-827. [PMID: 38325553 DOI: 10.1016/j.ajpath.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.
Collapse
Affiliation(s)
- Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene A Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Mirta N Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía S Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Zhang Y, Lu Q, Hu H, Yang C, Zhao Q. Esketamine alleviates hypoxia/reoxygenation injury of cardiomyocytes by regulating TRPV1 expression and inhibiting intracellular Ca 2+ concentration. Clinics (Sao Paulo) 2024; 79:100363. [PMID: 38692008 PMCID: PMC11070684 DOI: 10.1016/j.clinsp.2024.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of Esketamine (ESK) on the Hypoxia/Reoxygenation (H/R) injury of cardiomyocytes by regulating TRPV1 and inhibiting the concentration of intracellular Ca2+. METHODS The H/R injury model of H9c2 cardiomyocytes was established after 4h hypoxia and 6h reoxygenation. H9c2 cells were treated with different concentrations of ESK or TRPV1 agonist capsaicin (10 μM) or TRPV1 inhibitor capsazepine (1 μM). Cell viability was detected by CCK-8 method, and apoptosis by flow cytometry. Intracellular Ca2+ concentration was evaluated by Fluo-4 AM. LDH, MDA, SOD, and GSH-Px were detected with corresponding commercial kits. TRPV1 and p-TRPV1 proteins were detected by Western blot. RESULTS After H/R, H9c2 cell viability decreased, apoptosis increased, intracellular Ca2+ concentration increased, LDH and MDA levels increased, SOD and GSH-Px levels decreased, and p-TRPV1 expression increased. ESK treatment rescued these changes induced by H/R. After up-regulating TRPV1, the protective effect of ESK on H/R injury of H9c2 cells was weakened, while down-regulating TRPV1 could further protect against H/R injury. CONCLUSION ESK alleviates H/R injury of cardiomyocytes by regulating TRPV1 expression and inhibiting intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - QuanMei Lu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - HanChun Hu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - ChunChen Yang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - QiHong Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China.
| |
Collapse
|
23
|
Li W, He H, Du M, Gao M, Sun Q, Wang Y, Lu H, Ou S, Xia C, Xu C, Zhao Q, Sun H. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway. Phytother Res 2024; 38:1990-2006. [PMID: 38372204 DOI: 10.1002/ptr.8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Osteoarthritis (OA) is characterized by an imbalance between M1 and M2 polarized synovial macrophages. Quercetin has shown protective effects against OA by altering M1/M2-polarized macrophages, but the underlying mechanisms remain unclear. In this study, rat chondrocytes were treated with 10 ng/mL of IL-1β. To create M1-polarized macrophages in vitro, rat bone marrow-derived macrophages (rBMDMs) were treated with 100 ng/mL LPS. To mimic OA conditions observed in vivo, a co-culture system of chondrocytes and macrophages was established. ATP release assays, immunofluorescence assays, Fluo-4 AM staining, Transwell assays, ELISA assays, and flow cytometry were performed. Male adult Sprague-Dawley (SD) rats were used to create an OA model. Histological analyses, including H&E, and safranin O-fast green staining were performed. Our data showed a quercetin-mediated suppression of calcium ion influx and ATP release, with concurrent downregulation of TRPV1 and P2X7 in the chondrocytes treated with IL-1β. Activation of TRPV1 abolished the quercetin-mediated effects on calcium ion influx and ATP release in chondrocytes treated with IL-1β. In the co-culture system, overexpression of P2X7 in macrophages attenuated the quercetin-mediated effects on M1 polarization, migration, and inflammation. Either P2X7 or NLRP3 knockdown attenuated IL-1β-induced M1/M2 polarization, migration, and inflammation. Moreover, overexpression of TRPV1 reduced the quercetin-mediated suppressive effects on OA by promoting M1/M2-polarized macrophages in vivo. Collectively, our data showed that quercetin-induced suppression of TRPV1 leads to a delay in OA progression by shifting the macrophage polarization from M1 to M2 subtypes via modulation of the P2X7/NLRP3 pathway.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hebei He
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Min Du
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Mu Gao
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qijie Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yeyang Wang
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hanyu Lu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuanji Ou
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changliang Xia
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hongtao Sun
- Department of Orthopedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
25
|
Song L, Mi S, Zhao Y, Liu Z, Wang J, Wang H, Li W, Wang J, Zu W, Du H. Integrated virtual screening and in vitro studies for exploring the mechanism of triterpenoids in Chebulae Fructus alleviating mesaconitine-induced cardiotoxicity via TRPV1 channel. Front Pharmacol 2024; 15:1367682. [PMID: 38500766 PMCID: PMC10945000 DOI: 10.3389/fphar.2024.1367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background: In traditional Mongolian or Tibetan medicine in China, Chebulae Fructus (CF) is widely used to process or combine with aconitums to decrease the severe toxicity of aconitums. Researches in this area have predominantly focused on tannins, with few research on other major CF components for cardiotoxicity mitigation. The present study aimed to clarify whether triterpenoids can attenuate the cardiotoxicity caused by mesaconitine (MA) and investigate the mechanism of cardiotoxicity attenuation. Methods: Firstly, the pharmacophore model, molecular docking, and 3D-QSAR model were used to explore the mechanism of CF components in reducing the toxicity of MA mediated by the TRPV1 channel. Then three triterpenoids were selected to verify whether the triterpenoids had the effect of lowering the cardiotoxicity of MA using H9c2 cells combined with MTT, Hoechst 33258, and JC-1. Finally, Western blot, Fluo-3AM, and MTT assays combined with capsazepine were used to verify whether the triterpenoids reduced H9c2 cardiomyocyte toxicity induced by MA was related to the TRPV1 channel. Results: Seven triterpenoids in CF have the potential to activate the TRPV1 channel. And they exhibited greater affinity for TRPV1 compared to other compounds and MA. However, their activity was relatively lower than that of MA. Cell experiments revealed that MA significantly reduced H9c2 cell viability, resulting in diminished mitochondrial membrane potential and nuclear pyknosis and damage. In contrast, the triterpenoids could improve the survival rate significantly and counteract the damage of MA to the cells. We found that MA, arjungenin (AR), and maslinic acid (MSA) except corosolic acid (CRA) upregulated the expression of TRPV1 protein. MA induced a significant influx of calcium, whereas all three triterpenoids alleviated this trend. Blocking the TRPV1 channel with capsazepine only increased the cell viability that had been simultaneously treated with MA, and AR, or MSA. However, there was no significant difference in the CRA groups treated with or without capsazepine. Conclusion: The triterpenoids in CF can reduce the cardiotoxicity caused by MA. The MSA and AR function as TRPV1 agonists with comparatively reduced activity but a greater capacity to bind to TRPV1 receptors, thus antagonizing the excessive activation of TRPV1 by MA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
27
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. Cell Commun Signal 2024; 22:39. [PMID: 38225580 PMCID: PMC10789007 DOI: 10.1186/s12964-023-01461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). METHODS We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 µM acetaldehyde (ALD), or e-Cig (1.75 µg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. RESULTS ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. CONCLUSION Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
Affiliation(s)
- Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Namdev Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
28
|
Akhilesh, Uniyal A, Mehta A, Tiwari V. Combination chemotherapy in rodents: a model for chemotherapy-induced neuropathic pain and pharmacological screening. Metab Brain Dis 2024; 39:43-65. [PMID: 37991674 DOI: 10.1007/s11011-023-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) remains a therapeutic challenge, with no US-FDA approved drugs or effective treatments available. Despite significant progress in unravelling the pathophysiology of CINP, the clinical translation of this knowledge into tangible outcome remains elusive. Here, we employed behavioural and pharmacological approaches to establish and validate a novel combination-based chemotherapeutic model of peripheral neuropathy. Male Sprague Dawley rats were subjected to chemotherapy administration followed by assessment of pain behaviour at different time-points post-chemotherapy. Paclitaxel-treated animals displayed an enhanced thermal and mechanical hypersensitivity from day four onwards which continued till day thirty-five post last paclitaxel injection. Notably, rats subjected to combination chemotherapy, displayed prolonged hypersensitivity that emerged on day four and persisted until day fifty-six. RT-PCR analysis revealed significant upregulation in DRG and spinal mRNA expressions of TRP channels (TRPA1, TRPV1, & TRPM8), pro-inflammatory cytokines (TNF-α & IL-1β) and neuropeptides, Substance P and CGRP in both the pain models. Interestingly, the combination chemotherapy model demonstrated a significant increase in DRG and spinal NR2B expressions compared to rats solely treated with paclitaxel. Pharmacological investigations revealed that gabapentin treatment substantially mitigates pain hypersensitivity in both the combined chemotherapy and paclitaxel-administered groups, with the simultaneous reversal of cellular and molecular changes observed in the lumbar DRG and spinal cord of rats. The findings from this study suggests that combination chemotherapy model exhibits heightened and prolonged hypersensitivity in comparison to the conventional paclitaxel-induced neuropathic pain model. This model not only recapitulates clinical biomarkers of neuropathy but also presents a potential alternative platform for screening analgesic drugs targeted at CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anuj Mehta
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
29
|
Lourenço DM, Soares R, Sá-Santos S, Mateus JM, Rodrigues RS, Moreira JB, Vaz SH, Sebastião AM, Solá S, Xapelli S. Unravelling a novel role for cannabidivarin in the modulation of subventricular zone postnatal neurogenesis. Eur J Pharmacol 2023; 959:176079. [PMID: 37802277 DOI: 10.1016/j.ejphar.2023.176079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Postnatal neurogenesis has been shown to rely on the endocannabinoid system. Here we aimed at unravelling the role of Cannabidivarin (CBDV), a non-psychoactive cannabinoid, with high affinity for the non-classical cannabinoid receptor TRPV1, on subventricular zone (SVZ) postnatal neurogenesis. Using the neurosphere assay, SVZ-derived neural stem/progenitor cells (NSPCs) were incubated with CBDV and/or 5'-Iodoresinferotoxin (TRPV1 antagonist), and their role on cell viability, proliferation, and differentiation were dissected. CBDV was able to promote, through a TRPV1-dependent mechanism, cell survival, cell proliferation and neuronal differentiation. Furthermore, pulse-chase experiments revealed that CBDV-induced neuronal differentiation was a result of cell cycle exit of NSPCs. Regarding oligodendrocyte differentiation, CBDV inhibited oligodendrocyte differentiation and maturation. Since our data suggested that the CBDV-induced modulation of NSPCs acted via TRPV1, a sodium-calcium channel, and that intracellular calcium levels are known regulators of NSPCs fate and neuronal maturation, single cell calcium imaging was performed to evaluate the functional response of SVZ-derived cells. We observed that CBDV-responsive cells displayed a two-phase calcium influx profile, being the initial phase dependent on TRPV1 activation. Taken together, this work unveiled a novel and untapped neurogenic potential of CBDV via TRPV1 modulation. These findings pave the way to future neural stem cell biological studies and repair strategies by repurposing this non-psychoactive cannabinoid as a valuable therapeutic target.
Collapse
Affiliation(s)
- Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sónia Sá-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
30
|
Mekala N, Trivedi J, Bhoj P, Togre N, Rom S, Sriram U, Persidsky Y. Alcohol and e-cigarette damage alveolar-epithelial barrier by activation of P2X7r and provoke brain endothelial injury via extracellular vesicles. RESEARCH SQUARE 2023:rs.3.rs-3552555. [PMID: 38014253 PMCID: PMC10680944 DOI: 10.21203/rs.3.rs-3552555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Use of nicotine containing products like electronic cigarettes (e-Cig) and alcohol are associated with mitochondrial membrane depolarization, resulting in the extracellular release of ATP, and mitochondrial DNA (mtDNA), mediating inflammatory responses. While nicotine effects on lungs is well-known, chronic alcohol (ETH) exposure also weakens lung immune responses and cause inflammation. Extracellular ATP (eATP) released by inflammatory/stressed cells stimulate purinergic P2X7 receptors (P2X7r) activation in adjacent cells. We hypothesized that injury caused by alcohol and e-Cig to pulmonary alveolar epithelial cells (hPAEpiC) promote the release of eATP, mtDNA and P2X7r in circulation. This induces a paracrine signaling communication either directly or via EVs to affect brain cells (human brain endothelial cells - hBMVEC). Methods We used a model of primary human pulmonary alveolar epithelial cells (hPAEpiC) and exposed the cells to 100 mM ethanol (ETH), 100 μM acetaldehyde (ALD), or e-Cig (1.75μg/mL of 1.8% or 0% nicotine) conditioned media, and measured the mitochondrial efficiency using Agilent Seahorse machine. Gene expression was measured by Taqman RT-qPCR and digital PCR. hPAEpiC-EVs were extracted from culture supernatant and characterized by flow cytometric analysis. Calcium (Ca2+) and eATP levels were quantified using commercial kits. To study intercellular communication via paracrine signaling or by EVs, we stimulated hBMVECs with hPAEpiC cell culture medium conditioned with ETH, ALD or e-cig or hPAEpiC-EVs and measured Ca2+ levels. Results ETH, ALD, or e-Cig (1.8% nicotine) stimulation depleted the mitochondrial spare respiration capacity in hPAEpiC. We observed increased expression of P2X7r and TRPV1 genes (3-6-fold) and increased intracellular Ca2+ accumulation (20-30-fold increase) in hPAEpiC, resulting in greater expression of endoplasmic reticulum (ER) stress markers. hPAEpiC stimulated by ETH, ALD, and e-Cig conditioned media shed more EVs with larger particle sizes, carrying higher amounts of eATP and mtDNA. ETH, ALD and e-Cig (1.8% nicotine) exposure also increased the P2X7r shedding in media and via EVs. hPAEpiC-EVs carrying P2X7r and eATP cargo triggered paracrine signaling in human brain microvascular endothelial cells (BMVECs) and increased Ca2+ levels. P2X7r inhibition by A804598 compound normalized mitochondrial spare respiration, reduced ER stress and diminished EV release, thus protecting the BBB function. Conclusion Abusive drugs like ETH and e-Cig promote mitochondrial and endoplasmic reticulum stress in hPAEpiC and disrupts the cell functions via P2X7 receptor signaling. EVs released by lung epithelial cells against ETH/e-cig insults, carry a cargo of secondary messengers that stimulate brain cells via paracrine signals.
Collapse
|
31
|
Kim J, Yang S, Choi IS. Neutralization of Cannabidiol Neurotoxicity in Neuron-Astrocyte Sandwich Coculture. Adv Biol (Weinh) 2023; 7:e2300090. [PMID: 37080943 DOI: 10.1002/adbi.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Cannabidiol (CBD), a main nonpsychoactive phytocannabinoid in the Cannabis genus, has been in the limelight for its potential health benefits in various neurological diseases. However, the safety issue of CBD in the nervous system has not been settled fully, while CBD has been reported to have mild side effects including dizziness and somnolence. In this work, a platform of neuron-astrocyte sandwich coculture to investigate the neurotoxicity of CBD, as well as the neuronal responses to CBD, in a more in vivo relevant mode is constructed. CBD (15 and 30 µm) causes the viability decrease, along with morphological damage, in the neuron-alone culture, whereas its neurotoxic effects are significantly attenuated by the supports of astrocytes in the neuron-astrocyte coculture. In addition, it is found that CBD-induced increase of intracellular Ca2+ concentration and depolarization of mitochondrial membrane potential, via activation of transient receptor potential vanilloid 1, are noticeably ameliorated by coculturing neurons with astrocytes. This work provides crucial information in the development of CBD as therapeutics for neurological disorders, as well as in a fundamental understanding of how CBD works in the nervous system.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
32
|
Kim J, Seo S, Park JHY, Lee KW, Kim J, Kim JC. Ca 2+-Permeable TRPV1 Receptor Mediates Neuroprotective Effects in a Mouse Model of Alzheimer's Disease via BDNF/CREB Signaling Pathway. Mol Cells 2023; 46:319-328. [PMID: 37070458 PMCID: PMC10183797 DOI: 10.14348/molcells.2023.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 04/19/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) protein is a Ca2+-permeable non-selective cation channel known for its pain modulation pathway. In a previous study, it was discovered that a triple-transgenic Alzheimer's disease (AD) mouse model (3xTg-AD+/+) has anti-AD effects. The expression of proteins in the brain-derived neurotrophic factor (BDNF)/cAMP response element binding protein (CREB) pathway in a 3xTg-AD/TRPV1 transgenic mice model was investigated to better understand the AD regulatory effect of TRPV1 deficiency. The results show that TRPV1 deficiency leads to CREB activation by increasing BDNF levels and promoting phosphorylation of tyrosine receptor kinase B (TrkB), extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and CREB in the hippocampus. Additionally, TRPV1 deficiency-induced CREB activation increases the antiapoptotic factor B-cell lymphoma 2 (Bcl-2) gene, which consequently downregulates Bcl-2-associated X (Bax) expression and decreases cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP), which leads to the prevention of hippocampal apoptosis. In conclusion, TRPV1 deficiency exhibits neuroprotective effects by preventing apoptosis through the BDNF/CREB signal transduction pathway in the hippocampus of 3xTg-AD mice.
Collapse
Affiliation(s)
- Juyong Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Sangwoo Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | | | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jiyoung Kim
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin-Chul Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
33
|
Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S. Ca 2+ signaling and cell death. Cell Calcium 2023; 113:102759. [PMID: 37210868 DOI: 10.1016/j.ceca.2023.102759] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Multiple forms of regulated cell death (RCD) have been characterized, each of which originates from the activation of a dedicated molecular machinery. RCD can occur in purely physiological settings or upon failing cellular adaptation to stress. Ca2+ions have been shown to physically interact with - and hence regulate - various components of the RCD machinery. Moreover, intracellular Ca2+ accumulation can promote organellar dysfunction to degree that can be overtly cytotoxic or sensitize cells to RCD elicited by other stressors. Here, we provide an overview of the main links between Ca2+and different forms of RCD, including apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- Nada Dhaouadi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
34
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
35
|
Oh SJ, Lim JY, Son MK, Ahn JH, Song KH, Lee HJ, Kim S, Cho EH, Chung JY, Cho H, Kim H, Kim JH, Park J, Choi J, Hwang SW, Kim TW. TRPV1 inhibition overcomes cisplatin resistance by blocking autophagy-mediated hyperactivation of EGFR signaling pathway. Nat Commun 2023; 14:2691. [PMID: 37165076 PMCID: PMC10172196 DOI: 10.1038/s41467-023-38318-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Cisplatin resistance along with chemotherapy-induced neuropathic pain is an important cause of treatment failure for many cancer types and represents an unmet clinical need. Therefore, future studies should provide evidence regarding the mechanisms of potential targets that can overcome the resistance as well as alleviate pain. Here, we show that the emergence of cisplatin resistance is highly associated with EGFR hyperactivation, and that EGFR hyperactivation is arisen by a transcriptional increase in the pain-generating channel, TRPV1, via NANOG. Furthermore, TRPV1 promotes autophagy-mediated EGF secretion via Ca2+ influx, which activates the EGFR-AKT signaling and, consequentially, the acquisition of cisplatin resistance. Importantly, TRPV1 inhibition renders tumors susceptible to cisplatin. Thus, our findings indicate a link among cisplatin resistance, EGFR hyperactivation, and TRPV1-mediated autophagic secretion, and implicate that TRPV1 could be a crucial drug target that could not only overcome cisplatin resistance but also alleviate pain in NANOG+ cisplatin-resistant cancer.
Collapse
Affiliation(s)
- Se Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ji Yeon Lim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Min Kyu Son
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jun Hyeok Ahn
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Kwon-Ho Song
- Department of Cell biology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Hyo-Jung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Suyeon Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Eun Ho Cho
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Hyosun Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun Wook Hwang
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Tae Woo Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- NEX-I Inc., Seoul, 05854, Republic of Korea.
| |
Collapse
|
36
|
Mandal SK, Rath SK, Logesh R, Mishra SK, Devkota HP, Das N. Capsicum annuum L. and its bioactive constituents: A critical review of a traditional culinary spice in terms of its modern pharmacological potentials with toxicological issues. Phytother Res 2023; 37:965-1002. [PMID: 36255140 DOI: 10.1002/ptr.7660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
Capsicum annuum L., commonly known as chili pepper, is used as an important spice globally and as a crude drug in many traditional medicine systems. The fruits of C. annuum have been used as a tonic, antiseptic, and stimulating agent, to treat dyspepsia, appetites, and flatulence, and to improve digestion and circulation. The article aims to critically review the phytochemical and pharmacological properties of C. annuum and its major compounds. Capsaicin, dihydrocapsaicin, and some carotenoids are reported as the major active compounds with several pharmacological potentials especially as anticancer and cardioprotectant. The anticancer effect of capsaicinoids is mainly mediated through mechanisms involving the interaction of Ca2+ -dependent activation of the MAPK pathway, suppression of NOX-dependent reactive oxygen species generation, and p53-mediated activation of mitochondrial apoptosis in cancer cells. Similarly, the cardioprotective effects of capsaicinoids are mediated through their interaction with cellular transient receptor potential vanilloid 1 channel, and restoration of calcitonin gene-related peptide via Ca2+ -dependent release of neuropeptides and suppression of bradykinin. In conclusion, this comprehensive review presents detailed information about the traditional uses, phytochemistry, and pharmacology of major bioactive principles of C. annuum with special emphasis on anticancer, cardioprotective effects, and plausible toxic adversities along with food safety.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, India
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Rajan Logesh
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, India
| | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Niranjan Das
- Department of Chemistry, Ramthakur College, Agartala, India
| |
Collapse
|
37
|
Chen P, Li Y, Zhou Z, Pan C, Zeng L. Lathyrol promotes ER stress-induced apoptosis and proliferation inhibition in lung cancer cells by targeting SERCA2. Biomed Pharmacother 2023; 158:114123. [PMID: 36521248 DOI: 10.1016/j.biopha.2022.114123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Lathyrol is a natural product isolated from the traditional Chinese medicine Semen Euphorbiae with unknown anti-tumor effects. We found that lathyrol had significant inhibitory effect on lung cancer cells by inducing apoptosis and inhibiting proliferation. Subsequently, we demonstrated for the first time that endoplasmic reticulum (ER) stress is a key anti-tumor mechanism of lathyrol. Furthermore, we found that lathyrol can induce ER stress in lung cancer cells by upregulating the protein expression levels of GRP78, PERK, p-eIF2α, CHOP, and ATF4, and the inhibitory effect of lathyrol on lung cancer cells was significantly reversed when cells were pretreated with ER stress inhibitor. In addition, we found that inhibition of SERCA2 resulted in depletion of the ER Ca2+ pool followed by a sustained increase in cytoplasmic Ca2+ levels, eventually leading to ER stress induced tumor cell apoptosis and proliferation inhibition. Lathyrol targeted SERCA2 to cause a significant upregulation of Ca2+ levels, and the inhibitory effect of lathyrol on lung cancer cells was significantly reversed after pretreatment with SERCA2 agonist. Taken together, our data suggest that lathyrol exerts its anti-tumor effect primarily by targeting SERCA2. Our findings highlight the potential for lathyrol as a new candidate drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Yiqian Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Zhou Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Chuqi Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
38
|
Ma Z, Han H, Zhao Y. Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials 2023; 293:121947. [PMID: 36512861 DOI: 10.1016/j.biomaterials.2022.121947] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play critical roles in the regulation of the proliferation and apoptosis of cancerous cells. Targeted induction of mitochondrial dysfunction in cancer cells by multifunctional nanosystems for cancer treatment has attracted increasing attention in the past few years. Numerous therapeutic nanosystems have been designed for precise tumor therapy by inducing mitochondrial dysfunction, including reducing adenosine triphosphate, breaking redox homeostasis, inhibiting glycolysis, regulating proteins, membrane potential depolarization, mtDNA damage, mitophagy dysregulation and so on. Understanding the mechanisms of mitochondrial dysfunction would be helpful for efficient treatment of diseases and accelerating the translation of these therapeutic strategies into the clinic. Then, various strategies to construct mitochondria-targeted nanosystems and induce mitochondrial dysfunction are summarized, and the recent research progress regarding precise tumor therapeutics is highlighted. Finally, the major challenges and an outlook in this rapidly developing field are discussed. This review is expected to inspire further development of novel mitochondrial dysfunction-based strategies for precise treatments of cancer and other human diseases.
Collapse
Affiliation(s)
- Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
39
|
Maggi F, Morelli MB, Aguzzi C, Zeppa L, Nabissi M, Polidori C, Santoni G, Amantini C. Calcium influx, oxidative stress, and apoptosis induced by TRPV1 in chronic myeloid leukemia cells: Synergistic effects with imatinib. Front Mol Biosci 2023; 10:1129202. [PMID: 36876044 PMCID: PMC9975599 DOI: 10.3389/fmolb.2023.1129202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Calcium flux is the master second messenger that influences the proliferation-apoptosis balance. The ability of calcium flux alterations to reduce cell growth makes ion channels interesting targets for therapy. Among all, we focused on transient receptor potential vanilloid 1, a ligand-gated cation channel with selectivity for calcium. Its involvement in hematological malignancies is poorly investigated, especially in the field of chronic myeloid leukemia, a malignancy characterized by the accumulation of immature cells. Methods: FACS analysis, Western blot analysis, gene silencing, and cell viability assay were performed to investigate the activation of transient receptor potential vanilloid 1, by N-oleoyl-dopamine, in chronic myeloid leukemia cell lines. Results: We demonstrated that the triggering of transient receptor potential vanilloid 1 inhibits cell growth and promotes apoptosis of chronic myeloid leukemia cells. Its activation induced calcium influx, oxidative stress, ER stress, mitochondria dysfunction, and caspase activation. Interestingly, a synergistic effect exerted by N-oleoyl-dopamine and the standard drug imatinib was found. Conclusion: Overall, our results support that transient receptor potential vanilloid 1 activation could be a promising strategy to enhance conventional therapy and improve the management of chronic myeloid leukemia.
Collapse
Affiliation(s)
- Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | | | - Laura Zeppa
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Carlo Polidori
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
40
|
Gao N, Li M, Wang W, Liu Z, Guo Y. A bibliometrics analysis and visualization study of TRPV1 channel. Front Pharmacol 2023; 14:1076921. [PMID: 37025492 PMCID: PMC10070874 DOI: 10.3389/fphar.2023.1076921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background: At the end of the 1990s, transient receptor potential vanilloid 1 (TRPV1) was first identified and cloned, serving as a key pain and heat sensor in humans. A large body of evidence have revealed its polymodal structure, complex function and wide-spread distribution, the specific mechanism of the ion channel remains unclear. Our goal here is to perform a bibliometric analysis and visualization study to present hotspots and trends in TRPV1 channel. Materials and Methods: TRPV1-related publications from inception to 2022 were retrieved from the Web of Science database. Excel, VOSviewer, and CiteSpace software were utilized for co-authorship, co-citation and co-occurrence analysis. Results: There were 9,113 publications included in the study, the number of publications increased rapidly after 1989, from 7 in 1990 to 373 in 2007, during which the number of citations per publication (CPP) also reached a peak in 2000 (CPP = 106.52). A total of 1,486 journals published TRPV1 articles, mainly belong to Q1 or Q2 divisions; The United States published the most articles (TP = 3,080), followed by Japan (TP = 1,221), China (TP = 1,217), and England (TP = 734); In recent years, the TRPV1-related research direction has been broaden to multiple fields related to inflammation, oxidative stress, and apoptosis; Keyword clustering refined the topic distributions and could be generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. Conclusion: By conducting an exhaustive bibliographic search, this review refined the topic distributions and generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. It is currently being clarified how exactly TRPV1 works as an ion channel, and much more in-depth basic research is needed in the future.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| |
Collapse
|
41
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
42
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol 2022; 13:1066023. [PMID: 36589466 PMCID: PMC9797668 DOI: 10.3389/fphys.2022.1066023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.
Collapse
Affiliation(s)
- Shtaywy S. Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan,*Correspondence: Shtaywy S. Abdalla,
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Yasser K. Bustanji
- Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
44
|
The Cytotoxic Effects of Cannabidiol and Cannabigerol on Glioblastoma Stem Cells May Mostly Involve GPR55 and TRPV1 Signalling. Cancers (Basel) 2022; 14:cancers14235918. [PMID: 36497400 PMCID: PMC9738061 DOI: 10.3390/cancers14235918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers, comprising 60-70% of all gliomas. The large G-protein-coupled receptor family includes cannabinoid receptors CB1, CB2, GPR55, and non-specific ion receptor protein transporters TRPs. First, we found up-regulated CNR1, GPR55, and TRPV1 expression in glioma patient-derived tissue samples and cell lines compared with non-malignant brain samples. CNR1 and GPR55 did not correlate with glioma grade, whereas TRPV1 negatively correlated with grade and positively correlated with longer overall survival. This suggests a tumour-suppressor role of TRPV1. With respect to markers of GBM stem cells, preferred targets of therapy, TRPV1 and GPR55, but not CNR1, strongly correlated with different sets of stemness gene markers: NOTCH, OLIG2, CD9, TRIM28, and TUFM and CD15, SOX2, OCT4, and ID1, respectively. This is in line with the higher expression of TRPV1 and GPR55 genes in GSCs compared with differentiated GBM cells. Second, in a panel of patient-derived GSCs, we found that CBG and CBD exhibited the highest cytotoxicity at a molar ratio of 3:1. We suggest that this mixture should be tested in experimental animals and clinical studies, in which currently used Δ9-tetrahydrocannabinol (THC) is replaced with efficient and non-psychoactive CBG in adjuvant standard-of-care therapy.
Collapse
|
45
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
46
|
Aziz AI, Nguyen LC, Oumeslakht L, Bensussan A, Ben Mkaddem S. Cannabinoids as Immune System Modulators: Cannabidiol Potential Therapeutic Approaches and Limitations. Cannabis Cannabinoid Res 2022; 8:254-269. [PMID: 36413346 DOI: 10.1089/can.2022.0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.
Collapse
Affiliation(s)
- Abdel-ilah Aziz
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Loubna Oumeslakht
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Armand Bensussan
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France
| | - Sanae Ben Mkaddem
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
47
|
Yao E, Luo L, Lin C, Wen J, Li Y, Ren T, Chen Y, Huang J, Jin X. OEA alleviates apoptosis in diabetic rats with myocardial ischemia/reperfusion injury by regulating the PI3K/Akt signaling pathway through activation of TRPV1. Front Pharmacol 2022; 13:964475. [PMID: 36452230 PMCID: PMC9701823 DOI: 10.3389/fphar.2022.964475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/27/2022] [Indexed: 07/22/2023] Open
Abstract
Reperfusion therapy after myocardial infarction may lead to myocardial injury, which can be complicated and exacerbated by diabetes. The existing therapeutic methods for myocardial ischemia-reperfusion injury (MIRI) in diabetic patients are not ideal. Oleoylethanolamide (OEA) has been found to have protective effects on diabetes and acute cerebral ischemia. This study aimed to determine whether OEA can alleviate MIRI in diabetic rats, and to explore the underlying mechanism. The model of diabetic rats with MIRI was established by blocking the left coronary artery for 30 min, followed by restoring blood flow stability for 120 min. The myocardial enzyme spectrum, area of MIRI, and expression levels of apoptosis-related proteins were detected. The results showed that OEA pretreatment could reduce myocardial infarction area, protect myocardial tissue structure, and reduce myocardial cell apoptosis in diabetic rats with MIRI. Meanwhile, the levels of creatine kinase (CK)-MB (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA) were reduced, while superoxide dismutase (SOD) level was elevated. H9C2 cells were treated with high glucose and oxygen-glucose deprivation/reperfusion (OGD/R) to establish an in vitro model. Capsazepine (CPZ), an antagonist of transient receptor potential vanilloid subtype 1 (TRPV1), and LY294002, an inhibitor of PI3K, were used to treat H9C2 cells in vitro. Apoptosis level and the expression levels of apoptosis-related proteins were measured. It was found that OEA activated TRPV1 and the PI3K/Akt signaling pathway, downregulated the expression levels of apoptosis-related proteins (Bcl-2 and cleaved caspase-3), and ameliorated the apoptosis of H9C2 cells treated with high glucose and OGD/R. This study clarified that OEA, as a TRPV1 agonist, could reduce myocardial cell apoptosis by activating the PI3K/Akt signaling pathway in diabetic rats with MIRI. The findings may provide a theoretical basis for administration of OEA as a potential therapeutic agent into diabetic patients with MIRI.
Collapse
Affiliation(s)
- Enhui Yao
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Lili Luo
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Lin
- Department of Pediatrics, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Wen
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| | - Yanglongfei Li
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Tong Ren
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| | - Yujie Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Jinhua Huang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
48
|
TRPV1 Is a Potential Tumor Suppressor for Its Negative Association with Tumor Proliferation and Positive Association with Antitumor Immune Responses in Pan-Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6964550. [PMID: 36304985 PMCID: PMC9596243 DOI: 10.1155/2022/6964550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
Background Although numerous studies have shown that the expression and activation of TRPV1 have an important role in cancer development, a comprehensive exploration of associations between TRPV1 expression and tumor proliferation, microenvironment, and clinical outcomes in pan-cancer remains insufficient. Methods From The Cancer Genome Atlas (TCGA) program, we downloaded multiomics data of ten cancer cohorts and investigated the correlations between TRPV1 expression and immune signatures' enrichment, stromal content, genomic features, oncogenic signaling, and clinical features in these cancer cohorts and pan-cancer. Results Elevated expression of TRPV1 correlated with better clinical outcomes in pan-cancer and diverse cancer types. In multiple cancer types, TRPV1 expression correlated negatively with the expression of tumor proliferation marker genes (MKI67 and RACGAP1), proliferation scores, cell cycle scores, stemness scores, epithelial-mesenchymal transition scores, oncogenic pathways' enrichment, tumor immunosuppressive signals, intratumor heterogeneity, homologous recombination deficiency, tumor mutation burden, and stromal content. Moreover, TRPV1 expression was downregulated in late-stage versus early-stage tumors. In breast cancer, bladder cancer, and low-grade glioma, TRPV1 expression was more inferior in invasive than in noninvasive subtypes. Pathway analysis showed that the enrichment of cancer-associated pathways correlated inversely with TRPV1 expression levels. Conclusion TRPV1 upregulation correlates with decreased tumor proliferation, tumor driver gene expression, genomic instability, and tumor immunosuppressive signals in various cancers. Our results provide new understanding of the role of TRPV1 in both cancer biology and clinical practice.
Collapse
|
49
|
Recent Developments on the Roles of Calcium Signals and Potential Therapy Targets in Cervical Cancer. Cells 2022; 11:cells11193003. [PMID: 36230965 PMCID: PMC9563098 DOI: 10.3390/cells11193003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is implicated in proliferation, invasion, and metastasis in cancerous tissues. A variety of oncologic therapies and some candidate drugs induce their antitumor effects (in part or in whole) through the modulation of [Ca2+]i. Cervical cancer is one of most common cancers among women worldwide. Recently, major research advances relating to the Ca2+ signals in cervical cancer are emerging. In this review, we comprehensively describe the current progress concerning the roles of Ca2+ signals in the occurrence, development, and prognosis of cervical cancer. It will enhance our understanding of the causative mechanism of Ca2+ signals in cervical cancer and thus provide new sights for identifying potential therapeutic targets for drug discovery.
Collapse
|
50
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|