1
|
Liu SF, Li MJ, Liang B, Sun W, Shao Y, Hu X, Xing D. Breaking the barrier: Nanoparticle-enhanced radiotherapy as the new vanguard in brain tumor treatment. Front Pharmacol 2024; 15:1394816. [PMID: 39021831 PMCID: PMC11252536 DOI: 10.3389/fphar.2024.1394816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The pursuit of effective treatments for brain tumors has increasingly focused on the promising area of nanoparticle-enhanced radiotherapy (NERT). This review elucidates the context and significance of NERT, with a particular emphasis on its application in brain tumor therapy-a field where traditional treatments often encounter obstacles due to the blood-brain barrier (BBB) and tumor cells' inherent resistance. The aims of this review include synthesizing recent advancements, analyzing action mechanisms, and assessing the clinical potential and challenges associated with nanoparticle (NP) use in radiotherapy enhancement. Preliminary preclinical studies have established a foundation for NERT, demonstrating that nanoparticles (NPs) can serve as radiosensitizers, thereby intensifying radiotherapy's efficacy. Investigations into various NP types, such as metallic, magnetic, and polymeric, have each unveiled distinct interactions with ionizing radiation, leading to an augmented destruction of tumor cells. These interactions, encompassing physical dose enhancement and biological and chemical radio sensitization, are crucial to the NERT strategy. Although clinical studies are in their early phases, initial trials have shown promising results in terms of tumor response rates and survival, albeit with mindful consideration of toxicity profiles. This review examines pivotal studies affirming NERT's efficacy and safety. NPs have the potential to revolutionize radiotherapy by overcoming challenges in targeted delivery, reducing off-target effects, and harmonizing with other modalities. Future directions include refining NP formulations, personalizing therapies, and navigating regulatory pathways. NERT holds promise to transform brain tumor treatment and provide hope for patients.
Collapse
Affiliation(s)
- Shi feng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Jiao Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Wenshe Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yingchun Shao
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Xiaokun Hu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Das R. T Cell Receptor-Engaging Monoclonal Antibodies Mobilize the Anti-Tumor Functions of Invariant Natural Killer T Cells. Crit Rev Oncog 2024; 29:69-81. [PMID: 38421715 PMCID: PMC11062185 DOI: 10.1615/critrevoncog.2023049947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Invariant natural killer T cells (iNKTs) are innate-type T lymphocytes that directly kill tumor cells or tumor-growth promoting immunosuppressive cells such astumor-associated macrophages. Additionally, iNKTs robustly transactivate the antitumor functions of T, B, natural killer, and dendritic cells as well as reinvigorate exhausted immune cells in the tumor microenvironment. As such, iNKTs make excellent candidates for inclusion in anti-cancer cellular therapies. However, to capitalize on the potential benefits of iNKT cell-based approaches, it is imperative that we develop new and clinically viable strategies to enhance their antitumor function. To that end, two novel monoclonal antibodies (mAbs) that selectively bind to the human (NKTT320) or murine (NKT14m) invariant T cell receptor have been recently developed and characterized. Studies using purified human iNKTs (in vitro) and a model of non-human primate (in vivo) reveal that NKTT320 promotes swift, vigorous and sustained iNKT cell activation that is accompanied by robust production of inflammatory mediators and bystander immune cell activation. Furthermore, NKTT320 augments expression of cytotoxic markers and human iNKT cell degranulation. Similarly, NKT14m prompts dramatic murine iNKT cell activation and functional response both in vitro and in vivo. However, antitumor efficacy of a single dose of NKT14m injection in tumor-bearing mice is limited and tumor-model dependent. In contrast, combination treatment of NKT14m with either low dose interleukin (IL)-12 or the chemotherapeutic agent, cyclophosphamide results in a superior antitumor response in vivo. This is evident by activation of both iNKTs and other immune cells, prolonged survival of the tumor-challenged mice, and long-lasting immunity. Collectively, these recent studies justify further development of anti-iTCR mAbs that can be used alone or in conjunction with immunomodulatory agents to enhance iNKT cell antitumor immunity against various cancers.
Collapse
Affiliation(s)
- Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Bond NG, Fahlberg MD, Yu S, Rout N, Tran D, Fitzpatrick-Schmidt T, Sprehe LM, Scheef EA, Mudd JC, Schaub R, Kaur A. Immunomodulatory potential of in vivo natural killer T (NKT) activation by NKTT320 in Mauritian-origin cynomolgus macaques. iScience 2022; 25:103889. [PMID: 35243248 PMCID: PMC8866157 DOI: 10.1016/j.isci.2022.103889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Invariant natural killer T-lymphocytes (iNKT) are unique immunomodulatory innate T cells with an invariant TCRα recognizing glycolipids presented on MHC class-I-like CD1d molecules. Activated iNKT rapidly secrete pro-and anti-inflammatory cytokines, potentiate immunity, and modulate inflammation. Here, we report the effects of in vivo iNKT activation in Mauritian-origin cynomolgus macaques by a humanized monoclonal antibody, NKTT320, that binds to the invariant region of the iNKT TCR. NKTT320 led to rapid iNKT activation, increased polyfunctionality, and elevation of multiple plasma analytes within 24 hours. Flow cytometry and RNA-Seq confirmed downstream activation of multiple immune subsets, enrichment of JAK/STAT and PI3K/AKT pathway genes, and upregulation of inflammation-modulating genes. NKTT320 also increased iNKT frequency in adipose tissue and did not cause iNKT anergy. Our data indicate that NKTT320 has a sustained effect on in vivo iNKT activation, potentiation of innate and adaptive immunity, and resolution of inflammation, which supports its future use as an immunotherapeutic. NKTT320 rapidly activates iNKT in vivo, modulating downstream immune function In vivo NKTT320 treatment modulates pro- and anti-inflammatory genes NKTT320 treatment results in activation of innate and adaptive immune subsets NKTT320 has promise as an immunotherapeutic with translational potential
Collapse
|
4
|
Zhu T, Wang R, Miller H, Westerberg LS, Yang L, Guan F, Lee P, Gong Q, Chen Y, Liu C. The interaction between iNKT cells and B cells. J Leukoc Biol 2021; 111:711-723. [PMID: 34312907 DOI: 10.1002/jlb.6ru0221-095rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, GuiZhou Province, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li G, Du X, Wu X, Wu S, Zhang Y, Xu J, Wang H, Chen T. Large-Scale Transcriptome Analysis Identified a Novel Cancer Driver Genes Signature for Predicting the Prognostic of Patients With Hepatocellular Carcinoma. Front Pharmacol 2021; 12:638622. [PMID: 34335239 PMCID: PMC8322950 DOI: 10.3389/fphar.2021.638622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and heterogeneity. Genetic mutations caused by driver genes are important contributors to the formation of the tumor microenvironment. The purpose of this study is to discuss the expression of cancer driver genes in tumor tissues and their clinical value in predicting the prognosis of HCC. Methods: All data were sourced from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) public databases. Differentially expressed and prognostic genes were screened by the expression distribution of the cancer driver genes and their relationship with survival. Candidate genes were subjected to functional enrichment and transcription factor regulatory network. We further constructed a prognostic signature and analyzed the survival outcomes and immune status between different risk groups. Results: Most cancer driver genes are specifically expressed in cancer tissues. Driver genes may influence HCC progression through processes such as transcription, cell cycle, and T-cell receptor-related pathways. Patients in different risk groups had significant survival differences (p < 0.05), and risk scores showed high predictive efficacy (AUC>0.69). Besides, risk subgroups were also associated with multiple immune functions and immune cell content. Conclusion: We confirmed the critical role of cancer driver genes in mediating HCC progression and the immune microenvironment. Risk subgroups contribute to the assessment of prognostic value in different patients and explain the heterogeneity of HCC.
Collapse
Affiliation(s)
- Gao Li
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowei Du
- Postgraduate College, Jinzhou Medical University, Jinzhou, China.,Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiong Wu
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen Wu
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Zhang
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Wang
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingsong Chen
- Second Department of Oncology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Philip H, Snir T, Gordin M, Shugay M, Zilberberg A, Efroni S. A T cell repertoire timestamp is at the core of responsiveness to CTLA-4 blockade. iScience 2021; 24:102100. [PMID: 33604527 PMCID: PMC7876555 DOI: 10.1016/j.isci.2021.102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Biology of the response to anti-CTLA-4 involves the dynamics of specific T cell clones. Reasons for clinical success and failure of this treatment are still largely unknown. Here, we quantified the dynamics of the T cell receptor (TCR) repertoire, throughout 4 weeks involving treatment with anti-CTLA-4, in a syngeneic mouse model for colorectal cancer. These dynamics show an initial increase in clonality in tandem with a decrease in diversity, effects which gradually subside. Furthermore, response to treatment is tightly connected to the shared and public parts of the T cell repertoire. We were able to recognize time-dependent behaviors of specific TCR sequences and cell types and to show the response is dominated by specific motifs. We see that a single, specific time point might be useful to inform a physician of the true response to treatmentThe research further highlights the importance of temporal analyses of the immune response. Response to ICI is associated with pre-treatment TCR repertoire in mice TCR repertoire goes through distinct, ICI-dependent changes with time Tumor size and its response to ICI can be tracked by TCR repertoire metrics A single time point is found to be a focal point of the immune response
Collapse
Affiliation(s)
- Hagit Philip
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tom Snir
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Miri Gordin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
7
|
Guan P, Schaub R, Nichols KE, Das R. Combination of NKT14m and Low Dose IL-12 Promotes Invariant Natural Killer T Cell IFN-γ Production and Tumor Control. Int J Mol Sci 2020; 21:ijms21145085. [PMID: 32708464 PMCID: PMC7404385 DOI: 10.3390/ijms21145085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes characterized by the expression of an invariant T cell receptor (iTCR) that recognizes glycolipid antigens presented by the MHC I-like CD1d molecule. Following antigenic stimulation, iNKT cells rapidly produce large amounts of cytokines that can trans-activate dendritic cells (DC) and promote the anti-tumor functions of cytotoxic lymphocytes, such as natural killer (NK) and CD8 T cells. Additionally, iNKT cells can mediate robust and direct cytotoxicity against CD1d+ tumor targets. However, many tumors down-regulate CD1d and evade iNKT cell attack. To circumvent this critical barrier to iNKT cell anti-tumor activity, a novel monoclonal antibody (mAb), NKT14 has been recently developed. This agonistic antibody binds directly and specifically to the iTCR of murine iNKT cells. In the current study, we demonstrate that NKT14m mediates robust activation, cytokine production and degranulation of murine iNKT cells, in vitro. Consistently, NKT14m also promoted iNKT cell activation and immunomodulatory functions, in vivo. Finally, administration of NKT14m with low dose interleukin (IL)-12 further augmented iNKT cell IFN-γ production in vivo, and this combination conferred superior suppression of tumor cell growth compared to NKT14m or IL-12 alone. Together, these data demonstrate that a combination treatment consisting of low dose IL-12 and iTCR-specific mAb may be an attractive alternative to activate iNKT cell anti-tumor functions.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD1d/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Drug Synergism
- Drug Therapy, Combination/methods
- Immunomodulation/drug effects
- Interferon-gamma/metabolism
- Interleukin-12/pharmacology
- Lymphoma/drug therapy
- Lymphoma/immunology
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Peng Guan
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Robert Schaub
- RGS Consulting, 118 Jeremy Hill Road Pelham, Pelham, NH 03076, USA;
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-884-5049; Fax: +1-517-355-5125
| |
Collapse
|