1
|
Lin W, Mousavi F, Blum BC, Heckendorf CF, Lawton M, Lampl N, Hekman R, Guo H, McComb M, Emili A. PANAMA-enabled high-sensitivity dual nanoflow LC-MS metabolomics and proteomics analysis. CELL REPORTS METHODS 2024; 4:100803. [PMID: 38959888 PMCID: PMC11294829 DOI: 10.1016/j.crmeth.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/16/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.
Collapse
Affiliation(s)
- Weiwei Lin
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| | - Fatemeh Mousavi
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Christian F Heckendorf
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew Lawton
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Noah Lampl
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Hongbo Guo
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Mark McComb
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Swami S, Mughees M, Mangangcha IR, Kauser S, Wajid S. Secretome analysis of breast cancer cells to identify potential target proteins of Ipomoea turpethum extract-loaded nanoparticles in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1247632. [PMID: 37900279 PMCID: PMC10602817 DOI: 10.3389/fcell.2023.1247632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Breast cancer is the leading cause of frequent malignancy and morbidity among women across the globe, with an increment of 0.5% incidences every year. The deleterious effects of traditional treatment on off-target surrounding cells make it difficult to win the battle against breast cancer. Hence, an advancement in the therapeutic approach is crucial. Nanotechnology is one of the emerging methods for precise, targeted, and efficient drug delivery in cells. The previous study has demonstrated the cytotoxic effect of Ipomoea turpethum extract on breast cancer cells delivered via NIPAAM-VP-AA nanoparticles (NVA-IT). Manipulating the tumor microenvironment (TME) to inhibit cancer progression, invasion, and metastasis seems to be very insightful for researchers these days. With the help of secretome analysis of breast cancer cells after treatment with NVA-IT, we have tried to find out the possible TME manipulation achieved to favor a better prognosis of the disease. Method: MCF-7 and MDA MB-231 cells were treated with the IC50 value of NVA-IT, and the medium was separated from the cells after 24 h of the treatment. Nano LCMS/MS analysis was performed to identify the secretory proteins in the media. Further bioinformatics tools like GENT2, GSCA, GeneCodis 4, and STRING were used to identify the key proteins and their interactions. Result: From the nano LCMS/MS analysis, 70 differentially expressed secretory proteins in MCF-7 and 191 in MDA MB-231 were identified in the cell's media. Fifteen key target proteins were filtered using bioinformatics analysis, and the interaction of proteins involved in vesicular trafficking, cell cycle checkpoints, and oxidative stress-related proteins was prominent. Conclusion: This study concluded that I. turpethum extract-loaded NIPAAM-VP-AA nanoparticles alter the secretory proteins constituting the TME to cease cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Sanskriti Swami
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | - Sana Kauser
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Alwehaibi MA, Al-Ansari MM, Alfadda AA, Al-Malki R, Masood A, Abdel Rahman AM, Benabdelkamel H. Proteomics Investigation of the Impact of the Enterococcus faecalis Secretome on MCF-7 Tumor Cells. Int J Mol Sci 2023; 24:14937. [PMID: 37834385 PMCID: PMC10573200 DOI: 10.3390/ijms241914937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer is the most prevalent form of cancer among women. The microenvironment of a cancer tumor is surrounded by various cells, including the microbiota. An imbalance between microbes and their host may contribute to the development and spread of breast cancer. Therefore, the objective of this study is to investigate the influence of Enterococcus faecalis on a breast cancer cell line (MCF-7) to mimic the luminal A subtype of breast cancer, using an untargeted proteomics approach to analyze the proteomic profiles of breast cancer cells after their treatment with E. faecalis in order to understand the microbiome and its role in the development of cancer. The breast cancer cell line MCF-7 was cultured and then treated with a 10% bacterial supernatant at two time points (24 h and 48 h) at 37 °C in a humidified incubator with 5% CO2. Proteins were then extracted and separated using two-dimensional difference (2D-DIGE) gel electrophoresis, and the statistically significant proteins (p-value < 0.05, fold change > 1.5) were identified via matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The protein fingerprints showed a differential protein expression pattern in the cells treated with E. faecalis for 24 and 48 h compared with the control. We found 58 statistically significant proteins changes in the MCF-7 breast cancer cells affected by E. faecalis. Kilin and transgelin were upregulated after 24 h of treatment and could be used as diagnostic and prognostic markers for breast cancer. In addition, another protein involved in the inhibition of cell proliferation was coiled-coil domain-containing protein 154. The protein markers identified in this study may serve as possible biomarkers for breast cancer progression. This promotes their future uses as important therapeutic goals in the treatment and diagnosis of cancer and increases our understanding of the breast microbiome and its role in the development of cancer.
Collapse
Affiliation(s)
- Moudi A Alwehaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Al-Malki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
4
|
Alvarez-Rivera E, Ortiz-Hernández EJ, Lugo E, Lozada-Reyes LM, Boukli NM. Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms. Proteomes 2023; 11:22. [PMID: 37489388 PMCID: PMC10366845 DOI: 10.3390/proteomes11030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Emanuel J. Ortiz-Hernández
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Elyette Lugo
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| |
Collapse
|
5
|
Zhu H, Li Y, Guo J, Feng S, Ge H, Gu C, Wang M, Nie R, Li N, Wang Y, Wang H, Zhong J, Qian X, He G. Integrated proteomic and phosphoproteomic analysis for characterization of colorectal cancer. J Proteomics 2023; 274:104808. [PMID: 36596410 DOI: 10.1016/j.jprot.2022.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Proteins and translationally modified proteins like phosphoproteins have essential regulatory roles in tumorigenesis. This study attempts to elucidate the dysregulated proteins driving colorectal cancer (CRC). To explore the differential proteins, we performed iTRAQ labeling proteomics and TMT labeling phosphoproteomics analysis of CRC tissues and adjacent non-cancerous tissues. The functions of quantified proteins were analyzed using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Subcellular localization analysis. Depending on the results, we identified 330 differential proteins and 82 phosphoproteins in CRC. GO and KEGG analyses demonstrated that protein changes were primarily associated with regulating biological and metabolic processes through binding to other molecules. Co-expression relationships between proteomic and phosphoproteomic analysis revealed that TMC5, SMC4, SLBP, VSIG2, and NDRG2 were significantly dysregulated differential proteins. Additionally, based on the predicted co-expression proteins, we identified that the stem-loop binding protein (SLBP) was up-regulated in CRC cells and promoted the proliferation and migration of CRC. This study reports an integrated proteomic and phosphoproteomic analysis of CRC to discern the functional impact of protein alterations and provides a candidate diagnostic biomarker or therapeutic target for CRC. SIGNIFICANCE: Combining one or more high-throughput omics technologies with bioinformatics to analyze biological samples and explore the links between biomolecules and their functions can provide more comprehensive and multi-level insights for disease mechanism research. Proteomics, phosphoproteomics, metabolomics and their combined analysis play an important role in the auxiliary diagnosis, the discovery of biomarkers and novel therapeutic targets for colorectal cancer. In this integrated proteomic and phosphoproteomic analysis, we identified proteins and phosphoproteins in colorectal cancer tissue and analyzed potential mechanisms contributing to progression in colorectal cancer. The results of this study provide a foundation to focus future experiments on the contribution of altered protein and phosphorylation patterns to prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Huifang Zhu
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Yongzhen Li
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Jingyu Guo
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Shuang Feng
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Hong Ge
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Chuansha Gu
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Mengyao Wang
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Ruicong Nie
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Yongxia Wang
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Haijun Wang
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China
| | - Xinlai Qian
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China.
| | - Guoyang He
- Department of Pathology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang City, Henan Province, China.
| |
Collapse
|
6
|
The Chorioallantoic Membrane Xenograft Assay as a Reliable Model for Investigating the Biology of Breast Cancer. Cancers (Basel) 2023; 15:cancers15061704. [PMID: 36980588 PMCID: PMC10046776 DOI: 10.3390/cancers15061704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The chorioallantoic membrane (CAM) assay is an alternative in vivo model that allows for minimally invasive research of cancer biology. Using the CAM assay, we investigated phenotypical and functional characteristics (tumor grade, mitosis rate, tumor budding, hormone receptor (HR) and HER2 status, Ki-67 proliferation index) of two breast cancer cell lines, MCF-7 and MDA-MB-231, which resemble the HR+ (luminal) and triple-negative breast cancer (TNBC) subgroups, respectively. Moreover, the CAM results were directly compared with murine MCF-7- and MDA-MB-231-derived xenografts and human patient TNBC tissue. Known phenotypical and biological features of the aggressive triple-negative breast cancer cell line (MDA-MB-231) were confirmed in the CAM assay, and mouse xenografts. Furthermore, the histomorphological and immunohistochemical variables assessed in the CAM model were similar to those in human patient tumor tissue. Given the confirmation of the classical biological and growth properties of breast cancer cell lines in the CAM model, we suggest this in vivo model to be a reliable alternative test system for breast cancer research to reduce murine animal experiments.
Collapse
|
7
|
Liu D, Ghani D, Wain J, Szeto WY, Laudanski K. Concomitant elevated serum levels of tenascin, MMP-9 and YKL-40, suggest ongoing remodeling of the heart up to 3 months after cardiac surgery after normalization of the revascularization markers. Eur J Med Res 2022; 27:208. [PMID: 36271425 PMCID: PMC9585873 DOI: 10.1186/s40001-022-00831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recovery from cardiac surgery involves resolving inflammation and remodeling with significant connective tissue turnover. Dynamics of smoldering inflammation and injury (white blood cells, platelets, CRP, IL-8, IL-6), vascular inflammation (IL-15, VEGF, RANTES), connective tissue remodeling (tenascin, MMP-9), cardiac injury and remodeling (YKL-40), and vascular remodeling (epiregulin, MCP-1, VEGF) were assessed up to 3 months after cardiac surgery. We hypothesize that at 3 months, studied markers will return to pre-surgical levels. METHODS Patients (n = 139) scheduled for non-emergent heart surgery were included, except for patients with pre-existing immunological aberrancies. Blood was collected before surgery(tbaseline), 24 h later(t24h) after the first sample, 7 days(t7d), and 3 months(t3m) after tbaseline. Serum markers were measured via multiplex or ELISA. Electronic medical records (EMR) were used to extract demographical, pre-existing conditions and clinical data. Disposition (discharge home, discharge to facility, death, re-admission) was determined at 28 days and 3 months from admission. RESULTS Not all inflammatory markers returned to baseline (CRP↑↑, leukocytosis, thrombocytosis, IL-8↓, IL-6↓). Tenascin and YKL-40 levels remained elevated even at t3m. YKL-40 serum levels were significantly elevated at t24h and t7d while normalized at t3m. VEGF returned to the baseline, yet MCP-1 remained elevated at 3 months. CCL28 increased at 3 months, while RANTES and IL-15 declined at the same time. Disposition at discharge was determined by serum MMP-9, while YKL-40 correlated with duration of surgery and APACHE II24h. CONCLUSIONS The data demonstrated an ongoing extracellular matrix turnover at 3 months, while acute inflammation and vascular remodeling resolved only partially.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Danyal Ghani
- College of Art and Sciences, Drexel University, Philadelphia, PA, USA
| | - Justin Wain
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Wilson Y Szeto
- Department of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA. .,Leonard Davis Institute for Health Economics, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA.
| |
Collapse
|
8
|
Laudanski K, Liu D, Hajj J, Ghani D, Szeto WY. Serum level of total histone 3, H3K4me3, and H3K27ac after non-emergent cardiac surgery suggests the persistence of smoldering inflammation at 3 months in an adult population. Clin Epigenetics 2022; 14:112. [PMID: 36068552 PMCID: PMC9446722 DOI: 10.1186/s13148-022-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background Despite clinical relevance of immunological activation due to histone leakage into the serum following cardiac surgery, long-term data describing their longitudinal dynamic are lacking. Therefore, this study examines the serum levels of histone 3 (tH3) and its modifications (H3K4me3 and H3K27ac) alongside immune system activation during the acute and convalescence phases of cardiac surgery. Methods Blood samples from fifty-nine individuals were collected before non-emergent cardiac surgery (tpre-op) and 24 h (t24hr), seven days (t7d), and three months (t3m) post-procedure to examine serum levels of tH3, H3K4me3, and H3K27ac. Serum heat shock protein-60 (HSP-60) was a surrogate of the cellular damage marker. Serum C-reactive protein (CRP) and interleukin 6 (IL-6) assessed smoldering inflammation. TNFα and IL-6 production by whole blood in response to lipopolysaccharide (LPS) evaluated immunological activation. Electronic medical records provided demographic, peri-operative, and clinical information. Paired longitudinal analyses were employed with data expressed as mean and standard deviation (X ± SD) or median and interquartile range (Me[IQ25; 75%]. Results Compared to pre-operative levels (tH3Pre-op = 1.6[0.33;2.4]), post-operative serum tH3 significantly (p > 0.0001) increased after heart surgery (tH324hr = 2.2[0.3;28]), remained elevated at 7 days (tH37d = 2.4[0.37;5.3]), and at 3 months (tH33m = 2.0[0.31;2.9]). Serum H3K27ac was elevated at 24 h (H3K27ac24hr = 0.66 ± 0.51; p = 0.025) and seven days (H3K27ac7d = 0.94 ± 0.95; p = 0.032) as compared to baseline hours (H3K27acPre-op = 0.55 ± 0.54). Serum H3K4me3 was significantly diminished at three months (H3K4me3Pre-op = 0.94 ± 0.54 vs. H3K27ac3m = 0.59 ± 0.89; p = 0.008). tH3 correlated significantly with the duration of anesthesia (r2 = 0.38). In contrast, HSP-60 normalized seven days after surgery. Peri-operative intake of acetaminophen, but no acetylsalicylic acid (ASA), acid, ketorolac or steroids, resulted in the significant depression of serum H3K4me3 at 24 h (H3K4me3acetom- = 1.26[0.71; 3.21] vs H3K4me3acetom+ = 0.54[0.07;1.01]; W[50] = 2.26; p = 0.021). CRP, but not IL-6, remained elevated at 3 months compared to pre-surgical levels and correlated with tH324hrs (r2 = 0.43), tH37d (r2 = 0.71; p < 0.05), H3K4me37d (r2 = 0.53), and H3K27ac7d (r2 = 0.49). Production of TNFα by whole blood in response to LPS was associated with serum tH324hrs (r2 = 0.67). Diminished H3K4me324hrs, H3K27ac24hrs, and H3K27ac3m, accompanied the emergence of liver failure. Conclusions We demonstrated a prolonged elevation in serum histone 3 three months after cardiac surgery. Furthermore, histone 3 modifications had a discrete time evolution indicating differential immune activation.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA. .,Department of Neurology, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA. .,Leonard Davis Institute for Health Economics, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA.
| | - Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jihane Hajj
- School of Nursing, Widener University, Philadelphia, PA, USA
| | - Danyal Ghani
- Department of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Wilson Y Szeto
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Phosphoproteomic Analysis of Breast Cancer-Derived Small Extracellular Vesicles Reveals Disease-Specific Phosphorylated Enzymes. Biomedicines 2022; 10:biomedicines10020408. [PMID: 35203617 PMCID: PMC8962341 DOI: 10.3390/biomedicines10020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022] Open
Abstract
Small membrane-derived extracellular vesicles have been proposed as participating in several cancer diseases, including breast cancer (BC). We performed a phosphoproteomic analysis of breast cancer-derived small extracellular vesicles (sEVs) to provide insight into the molecular and cellular regulatory mechanisms important for breast cancer tumor progression and metastasis. We examined three cell line models for breast cancer: MCF10A (non-malignant), MCF7 (estrogen and progesterone receptor-positive, metastatic), and MDA-MB-231 (triple-negative, highly metastatic). To obtain a comprehensive overview of the sEV phosphoproteome derived from each cell line, effective phosphopeptide enrichment techniques IMAC and TiO2, followed by LC-MS/MS, were performed. The phosphoproteome was profiled to a depth of 2003 phosphopeptides, of which 207, 854, and 1335 were identified in MCF10A, MCF7, and MDA-MB-231 cell lines, respectively. Furthermore, 2450 phosphorylation sites were mapped to 855 distinct proteins, covering a wide range of functions. The identified proteins are associated with several diseases, mostly related to cancer. Among the phosphoproteins, we validated four enzymes associated with cancer and present only in sEVs isolated from MCF7 and MDA-MB-231 cell lines: ATP citrate lyase (ACLY), phosphofructokinase-M (PFKM), sirtuin-1 (SIRT1), and sirtuin-6 (SIRT6). With the exception of PFKM, the specific activity of these enzymes was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study demonstrates that sEVs contain functional metabolic enzymes that could be further explored for their potential use in early BC diagnostic and therapeutic applications.
Collapse
|
10
|
Ali R, Huwaizi S, Alhallaj A, Al Subait A, Barhoumi T, Al Zahrani H, Al Anazi A, Latif Khan A, Boudjelal M. New Born Calf Serum Can Induce Spheroid Formation in Breast Cancer KAIMRC1 Cell Line. Front Mol Biosci 2022; 8:769030. [PMID: 35004846 PMCID: PMC8740237 DOI: 10.3389/fmolb.2021.769030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Three-dimensional (3D) cell culture systems have become very popular in the field of drug screening and discovery. There is an immense demand for highly efficient and easy methods to produce 3D spheroids in any cell format. We have developed a novel and easy method to produce spheroids from the newly isolated KAIMRC1 cell line in vitro. It can be used as a 3D model to study proliferation, differentiation, cell death, and drug response of cancer cells. Our procedure requires growth media supplemented with 10% new born calf serum (NBCS) and regular cell culture plates to generate KAIMRC1 spheroids without the need for any specialized 3D cell culture system. This procedure generates multiple spheroids within a 12–24-h culture. KAIMRC1 spheroids are compact, homogeneous in size and morphology with a mean size of 55.8 µm (±3.5). High content imaging (HCI) of KAIMRC1 spheroids treated with a panel of 240 compounds resulted in the identification of several highly specific compounds towards spheroids. Immunophenotyping of KAIMRC1 spheroids revealed phosphorylation of FAK, cJUN, and E-cadherin, which suggests the involvement of JNK/JUN pathway in the KAIMRC1 spheroids formation. Gene expression analysis showed upregulation of cell junction genes, GJB3, DSC1, CLDN5, CLDN8, and PLAU. Furthermore, co-culture of KAIMRC1 cells with primary cancer-associated-fibroblasts (CAFs) showcased the potential of these cells in drug discovery application.
Collapse
Affiliation(s)
- Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Alshaimaa Alhallaj
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Arwa Al Subait
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Hajar Al Zahrani
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Abdullah Al Anazi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), MNGHA, Riyadh, Saudi Arabia
| | - Abdul Latif Khan
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), MNGHA, Riyadh, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Rashid M, Ali R, Almuzzaini B, Song H, AlHallaj A, Abdulkarim AA, Mohamed Baz O, Al Zahrani H, Mustafa Sabeena M, Alharbi W, Hussein M, Boudjelal M. Discovery of a novel potentially transforming somatic mutation in CSF2RB gene in breast cancer. Cancer Med 2021; 10:8138-8150. [PMID: 34729943 PMCID: PMC8607246 DOI: 10.1002/cam4.4106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
The colony stimulating factor 2 receptor subunit beta (CSF2RB) is the common signaling subunit of the cytokine receptors for IL-3, IL-5, and GM-CSF. Several studies have shown that spontaneous and random mutants of CSF2RB can lead to ligand independence in vitro. To date, no report(s) have been shown for the presence of potentially transforming and oncogenic CSF2RB mutation(s) clinically in cancer patients until the first reported case of a leukemia patient in 2016 harboring a germline-activating mutation (R461C). We combined exome sequencing, pathway analyses, and functional assays to identify novel somatic mutations in KAIMRC1 cells and breast tumor specimen. The patient's peripheral blood mononuclear cell (PBMC) exome served as a germline control in the identification of somatic mutations. Here, we report the discovery of a novel potentially transforming and oncogenic somatic mutation (S230I) in the CSF2RB gene of a breast cancer patient and the cell line, KAIMRC1 established from her breast tumor tissue. KAIMRC1 cells are immortalized and shown to survive and proliferate in ligand starvation condition. Immunoblot analysis showed that mutant CSF2RB signals through JAK2/STAT and PI3K/mTOR pathways in ligand starvation conditions. Screening a small molecule kinase inhibitor library revealed potent JAK2 inhibitors against KAIMRC1 cells. We, for the first time, identified a somatic, potentially transforming, and oncogenic CSF2RB mutation (S230I) in breast cancer patients that seem to be an actionable mutation leading to the development of new therapeutics for breast cancer.
Collapse
Affiliation(s)
- Mamoon Rashid
- Department of Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Alshaimaa AlHallaj
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Al Abdulrahman Abdulkarim
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Omar Mohamed Baz
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Hajar Al Zahrani
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Muhammed Mustafa Sabeena
- Department of Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Wardah Alharbi
- Department of Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Mohamed Hussein
- Department of Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), MNGHA, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Attaran S, Skoko JJ, Hopkins BL, Wright MK, Wood LE, Asan A, Woo HA, Feinberg A, Neumann CA. Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Br J Cancer 2021; 125:1146-1157. [PMID: 34389806 PMCID: PMC8505437 DOI: 10.1038/s41416-021-01510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxiredoxin 1 (PRDX1) belongs to an abundant family of peroxidases whose role in cancer is still unresolved. While mouse knockout studies demonstrate a tumour suppressive role for PRDX1, in cancer cell xenografts, results denote PRDX1 as a drug target. Probably, this phenotypic discrepancy stems from distinct roles of PRDX1 in certain cell types or stages of tumour progression. METHODS We demonstrate an important cell-autonomous function for PRDX1 utilising a syngeneic mouse model (BALB/c) and mammary fibroblasts (MFs) obtained from it. RESULTS Loss of PRDX1 in vivo promotes collagen remodelling known to promote breast cancer progression. PRDX1 inactivation in MFs occurs via SRC-induced phosphorylation of PRDX1 TYR194 and not through the expected direct oxidation of CYS52 in PRDX1 by ROS. TYR194-phosphorylated PRDX1 fails to bind to lysyl oxidases (LOX) and leads to the accumulation of extracellular LOX proteins which supports enhanced collagen remodelling associated with breast cancer progression. CONCLUSIONS This study reveals a cell type-specific tumour suppressive role for PRDX1 that is supported by survival analyses, depending on PRDX1 protein levels in breast cancer cohorts.
Collapse
Affiliation(s)
- Shireen Attaran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - John J Skoko
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Barbara L Hopkins
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan K Wright
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Laurel E Wood
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alparslan Asan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Adam Feinberg
- Department of Materials Science and Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Suliman RS, Alghamdi SS, Ali R, Aljatli DA, Huwaizi S, Suliman R, Albadrani GM, Tolayyan AA, Alghanem B. Metabolites Profiling, In Vitro, In Vivo, Computational Pharmacokinetics and Biological Predictions of Aloe perryi Resins Methanolic Extract. PLANTS 2021; 10:plants10061106. [PMID: 34070945 PMCID: PMC8227737 DOI: 10.3390/plants10061106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Background: Aloe perryi is a traditional herb that has various biological and pharmacological properties such as anti-inflammatory, laxative, antiviral, antidiabetic, and antitumor effects, which have not been deliberated before. The current investigation aims to evaluate in vitro cytotoxicity against several cancer cell lines in addition to in vivo anti-inflammatory activities of Aloe perryi extract using a rat animal model. Moreover, the pharmacokinetic properties of bioactive constituents and possible biological targets were assessed and evaluated. The methanolic extract of Aloe perryi was prepared by maceration, to tentatively identify the biomolecules of the Aloe perryi extract, analytical LC–QTOF-MS method was employed for Aloe perryi methanolic extract. The cytotoxic activity was examined in six cancer cell lines using Titer-Glo assay and the IC50s were calculated in addition to in silico target predictions and in vivo anti-inflammatory activity assessment. Subsequently, the pharmacokinetics of the identified active components of Aloe perryi were predicted using SwissADME, and target prediction using the Molinspiration webserver. The cytotoxic activity on HL60 and MDA-MB-231 was moderately affected by the Aloe perryi extract with IC50 of 63.81, and 89.85 μg/mL, respectively, with no activity on other cells lines. Moreover, the Aloe perryi extract exhibited a significant increase in wound contraction, hair growth, and complete re-epithelization when compared with the negative control. The pharmacokinetic properties of the bioactive constituents suggested a good pharmaceutical profile for the active compounds and nuclear receptors and enzymes were the two main possible targets for these active compounds. Our results demonstrated the promising activity of Aloe perryi extract with cytotoxic and anti-inflammatory properties, indicating a potential therapeutic utility of this plant in various disease conditions.
Collapse
Affiliation(s)
- Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (S.S.A.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.H.); (A.A.T.); (B.A.)
- Correspondence: ; Tel.: +966-11-429-9999 (ext. 99570)
| | - Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (S.S.A.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.H.); (A.A.T.); (B.A.)
| | - Rizwan Ali
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.H.); (A.A.T.); (B.A.)
| | - Dimah A. Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (S.S.A.); (D.A.A.)
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.H.); (A.A.T.); (B.A.)
| | - Rania Suliman
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dahran 34313, Saudi Arabia;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Abdulellah Al Tolayyan
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.H.); (A.A.T.); (B.A.)
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.H.); (A.A.T.); (B.A.)
| |
Collapse
|
14
|
El-Boubbou K, Ali R, Al-Humaid S, Alhallaj A, Lemine OM, Boudjelal M, AlKushi A. Iron Oxide Mesoporous Magnetic Nanostructures with High Surface Area for Enhanced and Selective Drug Delivery to Metastatic Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13040553. [PMID: 33920033 PMCID: PMC8071045 DOI: 10.3390/pharmaceutics13040553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 12/05/2022] Open
Abstract
This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption. IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70–120 m2/g and Vpore = 0.25–0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%) were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal microscopy, and flow cytometry experiments against different types of cancerous cells indicated that Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to 4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising agents for enhanced and effective drug delivery in cancer theranostics.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.A.-H.); (A.A.)
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.B.)
- Correspondence: or ; Tel.: +966-1-429-9999 (ext. 95625); Fax: +966-1-429-9999 (ext. 95581)
| | - Rizwan Ali
- Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.A.-H.); (A.A.)
| | - Sulaiman Al-Humaid
- Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.A.-H.); (A.A.)
| | - Alshaimaa Alhallaj
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.B.)
| | - O. M. Lemine
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia;
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.B.)
| | - Abdulmohsen AlKushi
- Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia; (R.A.); (S.A.-H.); (A.A.)
| |
Collapse
|