1
|
Guo X, Shang Z, Li Q, Wang L, Zhang Y, Liu S, Cao Y, Dong B. Whole-genome sequencing and assessment of a novel protein- and gossypol-degrading Bacillus subtilis strain isolated from intestinal digesta of Tibetan Pigs. BMC Microbiol 2024; 24:424. [PMID: 39438803 PMCID: PMC11495092 DOI: 10.1186/s12866-024-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With the rapid development of animal husbandry, the demand for protein feed resources is increasing. Cottonseed meal (CSM) and soybean meal (SBM) are rich sources of protein. However, their application is limited due to the existence of anti-nutrients, which can be harmful to the digestion and absorption. A strain of Bacillus subtilis (Mafic-Y7) was isolated from digesta of intestines of Tibetan pigs. The strain showed high protease activity, which helps in degrading proteinic anti-nutritional factors in grain meal and in vitro degradation of free gossypol. In order to better understand this isolated strain, whole genome of Mafic-Y7 strain was sequenced and analyzed. Different effects on various grain meals were identified. RESULT The GC-depth Poisson distributions showed no bias suggesting high-quality genome assembly of Mafic-Y7. The whole genome sequencing showed that one chromosome with 4,248,845 base pairs(bp)and the genes total length with 3,736,524 bp was predicted in Mafic-Y7. Additionally, Mafic-Y7 possessed 4,254 protein-coding genes, and several protease genes were annotated by aligning them with databases. There are 55 protease genes, one phytase gene and one laccase gene were annotated in the gene sequence of Mafic-Y7. The average nucleotide identity between Mafic-Y7 and the GCA-000009045.1 homologous genome was 0.9938, suggesting a close genetic relationship between them at the species level. Compared with the closest four whole genomes, Mafic-Y7 was annotated the most abundant of protease genes (55 genes). The fermentation supernatant of Mafic-Y7 could increase the content of small peptides, water-soluble proteins, and acid-soluble proteins in vitro by 411%, 281% and 317% in SBM and 420%, 257% and 338% in CSM. After fermentation in grain meal by Mafic-Y7, the degradation rate of anti-nutritional factors in SBM, such as trypsin inhibitor, glycinin, and β-conglycinin was greater than 70%, and lectin was greater than 30%. The degradation rates of anti-nutritional factors in CSM, such as gossypol and phytic acid, were 82% and 26%, respectively.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, 572025, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Gao Y, Guo Y, Wang Q, Zhang B, Wu X. Efficient Biodegradation of Multiple Aryloxyphenoxypropionate Herbicides by Corynebacterium sp. Z-1 and the Proposed Degradation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39038232 DOI: 10.1021/acs.jafc.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Esterases are crucial for aryloxyphenoxypropionate herbicide (AOPP) biodegradation. However, the underlying molecular mechanisms of AOPP biodegradation by esterases are poorly understood. In the current work, Corynebacterium sp. Z-1 was isolated and found to degrade multiple AOPPs, including quizalofop-p-ethyl (QPE), haloxyfop-p-methyl (HPM), fenoxaprop-p-ethyl (FPE), cyhalofop-butyl (CYB), and clodinafop-propargyl (CFP). A novel esterase, QfeH, which catalyzes the cleavage of ester bonds in AOPPs to form AOPP acids, was identified from strain Z-1. The catalytic activities of QfeH toward AOPPs decreased in the following order: CFP > FPE > CYB > QPE > HPM. Molecular docking, computational analyses, and site-directed mutagenesis indicated the catalytic mechanisms of QfeH-mediated degradation of different AOPPs. Notably, the key residue S159 is essential for the activity of QfeH. Moreover, V222Y, T227M, T227A, A271R, and M275K mutants, exhibiting 2.9-5.0 times greater activity than QfeH, were constructed. This study facilitates the mechanistic understanding of AOPPs bioremediation by esterases.
Collapse
Affiliation(s)
- Yongsheng Gao
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yurui Guo
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qingyuan Wang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Baoyu Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Zhang C, Yang X, Wang Z, Liu Y, Yao M, Zhu L, Gao P, Wang Z. Co-exposure effects of butyl benzyl phthalate and TiO 2 nanomaterials (anatase) on Metaphire guillelmi gut health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167036. [PMID: 37709098 DOI: 10.1016/j.scitotenv.2023.167036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Phthalic acid esters (PAEs) and TiO2 nanomaterials (nTiO2) are commonly used as plastic additives, nano-fertilizers or nano-pesticides. Their excessive co-applications led to the co-occurrence, which can induce damage to soil organisms such as Metaphire guillelmi (an earthworm widespread in farmland). However, the co-exposure effects of butyl benzyl phthalate (BBP, a typical PAEs) and nTiO2 on Metaphire guillelmi at environmental-relevant concentrations remain unclear. In this study, 1 mg kg-1 BBP and 1 mg kg-1 nTiO2 (anatase) were added into the soil to assess: (1) their effects on oxidative damage, digestive system, and neurotoxicity in Metaphire guillelmi gut on days 14 and 28; and (2) whether BBP and nTiO2 affected Metaphire guillelmi gut health by disrupting intestinal microorganisms. The results demonstrated that BBP and nTiO2 had the potential to inhibit the activity of superoxide dismutase, cellulase, protease, Na+K+-ATPase, and Ca2+-ATPase, as well as cause oxidative damage by altering intestinal bacteria such as Marmoricola and Microvirga at genus levels after 28 d-exposure. However, the exposure did not cause disorders of the intestinal bacteria. The present study provides more evidence for the sustainable application and scientific management of BBP and nTiO2, thus providing better guidance for PAEs and engineered nanomaterials regulations in agroecosystems.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengyao Yao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Peng Gao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China.
| |
Collapse
|
4
|
Putman LI, Schaerer LG, Wu R, Kulas DG, Zolghadr A, Ong RG, Shonnard DR, Techtmann SM. Deconstructed Plastic Substrate Preferences of Microbial Populations from the Natural Environment. Microbiol Spectr 2023; 11:e0036223. [PMID: 37260392 PMCID: PMC10433879 DOI: 10.1128/spectrum.00362-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Over half of the world's plastic waste is landfilled, where it is estimated to take hundreds of years to degrade. Given the continued use and disposal of plastic products, it is vital that we develop fast and effective ways to utilize plastic waste. Here, we explore the potential of tandem chemical and biological processing to process various plastics quickly and effectively. Four samples of compost or sediment were used to set up enrichment cultures grown on mixtures of compounds, including disodium terephthalate and terephthalic acid (monomers of polyethylene terephthalate), compounds derived from the chemical deconstruction of polycarbonate, and pyrolysis oil derived from high-density polyethylene plastics. Established enrichment communities were also grown on individual substrates to investigate the substrate preferences of different taxa. Biomass harvested from the cultures was characterized using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing. These data reveal low-diversity microbial communities structured by differences in culture inoculum, culture substrate source plastic type, and time. Microbial populations from the classes Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Acidobacteriae were significantly enriched when grown on substrates derived from high-density polyethylene and polycarbonate. The metagenomic data contain abundant aromatic and aliphatic hydrocarbon degradation genes relevant to the biodegradation of deconstructed plastic substrates used here. We show that microbial populations from diverse environments are capable of growth on substrates derived from the chemical deconstruction or pyrolysis of multiple plastic types and that paired chemical and biological processing of plastics should be further developed for industrial applications to manage plastic waste. IMPORTANCE The durability and impermeable nature of plastics have made them a popular material for numerous applications, but these same qualities make plastics difficult to dispose of, resulting in massive amounts of accumulated plastic waste in landfills and the natural environment. Since plastic use and disposal are projected to increase in the future, novel methods to effectively break down and dispose of current and future plastic waste are desperately needed. We show that the products of chemical deconstruction or pyrolysis of plastic can successfully sustain the growth of low-diversity microbial communities. These communities were enriched from multiple environmental sources and are capable of degrading complex xenobiotic carbon compounds. This study demonstrates that tandem chemical and biological processing can be used to degrade multiple types of plastics over a relatively short period of time and may be a future avenue for the mitigation of rapidly accumulating plastic waste.
Collapse
Affiliation(s)
- Lindsay I. Putman
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Laura G. Schaerer
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Ruochen Wu
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Daniel G. Kulas
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Ali Zolghadr
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Rebecca G. Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - David R. Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Stephen M. Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
5
|
Complete genome sequence of a novel chlorobenzene degrader, Burkholderia stabilis TF-2. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
7
|
Alessa O, Ogura Y, Fujitani Y, Takami H, Hayashi T, Sahin N, Tani A. Comprehensive Comparative Genomics and Phenotyping of Methylobacterium Species. Front Microbiol 2021; 12:740610. [PMID: 34737731 PMCID: PMC8561711 DOI: 10.3389/fmicb.2021.740610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs.
Collapse
Affiliation(s)
- Ola Alessa
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiko Fujitani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Hideto Takami
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University, Mugla, Turkey
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Feng M, Zhou J, Yu X, Wang H, Guo Y, Mao W. Bioremediation of triphenyl phosphate by Pycnoporus sanguineus: Metabolic pathway, proteomic mechanism and biotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125983. [PMID: 33975170 DOI: 10.1016/j.jhazmat.2021.125983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
So far, no information about the biodegradability of TPhP by white rot fungi has previously been made available, herein, Pycnoporus sanguineus was used as the representative to investigate the potential of white rot fungi in TPhP bioremediation. The results suggested that the biodegradation efficiency of 5 mg/L TPhP by P. sanguineus was 62.84% when pH was adjusted to 6 and initial glucose concentration was 5 g/L. Seven biodegradation products were identified, indicating that TPhP was biotransformed through oxidative cleavage, hydroxylation and methylation. The proteomic analysis revealed that cytochrome P450s, aromatic compound dioxygenase, oxidizing species-generating enzymes, methyltransferases and MFS general substrate transporters might occupy important roles in TPhP biotransformation. Carboxylesterase and glutathione S-transferase were induced to resist TPhP stress. The biotreatment by P. sanguineus contributed to a remarkable decrease of TPhP biotoxicity. Bioaugmentation with P. sanguineus could efficiently promote TPhP biodegradation in the water-sediment system due to the cooperation between P. sanguineus and some putative indigenous degraders, including Sphingobium, Burkholderia, Mycobacterium and Methylobacterium. Overall, this study provided the first insights into the degradation pathway, mechanism and security risk assessment of TPhP biodegradation by P. sanguineus and verified the feasibility of utilizing this fungus for TPhP bioremediation applications.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Jiahua Zhou
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yushuo Guo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|