1
|
Okiyoneda T, Borgo C, Bosello Travain V, Pedemonte N, Salvi M. Targeting ubiquitination machinery in cystic fibrosis: Where do we stand? Cell Mol Life Sci 2024; 81:271. [PMID: 38888668 PMCID: PMC11335196 DOI: 10.1007/s00018-024-05295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in CFTR gene expressing the anion selective channel CFTR located at the plasma membrane of different epithelial cells. The most commonly investigated variant causing CF is F508del. This mutation leads to structural defects in the CFTR protein, which are recognized by the endoplasmic reticulum (ER) quality control system. As a result, the protein is retained in the ER and degraded via the ubiquitin-proteasome pathway. Although blocking ubiquitination to stabilize the CFTR protein has long been considered a potential pharmacological approach in CF, progress in this area has been relatively slow. Currently, no compounds targeting this pathway have entered clinical trials for CF. On the other hand, the emergence of Orkambi initially, and notably the subsequent introduction of Trikafta/Kaftrio, have demonstrated the effectiveness of molecular chaperone-based therapies for patients carrying the F508del variant and even showed efficacy against other variants. These treatments directly target the CFTR variant protein without interfering with cell signaling pathways. This review discusses the limits and potential future of targeting protein ubiquitination in CF.
Collapse
Affiliation(s)
- Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, 669-1330, Japan.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Department of Medicine, University of Padova, 35128, Padova, Italy
| | | | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
2
|
Gu C, Fan X, Yu W. Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells 2023; 12:1947. [PMID: 37566026 PMCID: PMC10417760 DOI: 10.3390/cells12151947] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The small heat shock proteins (sHSPs), whose molecular weight ranges from 12∼43 kDa, are members of the heat shock protein (HSP) family that are widely found in all organisms. As intracellular stress resistance molecules, sHSPs play an important role in maintaining the homeostasis of the intracellular environment under various stressful conditions. A total of 10 sHSPs have been identified in mammals, sharing conserved α-crystal domains combined with variable N-terminal and C-terminal regions. Unlike large-molecular-weight HSP, sHSPs prevent substrate protein aggregation through an ATP-independent mechanism. In addition to chaperone activity, sHSPs were also shown to suppress apoptosis, ferroptosis, and senescence, promote autophagy, regulate cytoskeletal dynamics, maintain membrane stability, control the direction of cellular differentiation, modulate angiogenesis, and spermatogenesis, as well as attenuate the inflammatory response and reduce oxidative damage. Phosphorylation is the most significant post-translational modification of sHSPs and is usually an indicator of their activation. Furthermore, abnormalities in sHSPs often lead to aggregation of substrate proteins and dysfunction of client proteins, resulting in disease. This paper reviews the various biological functions of sHSPs in mammals, emphasizing the roles of different sHSPs in specific cellular activities. In addition, we discuss the effect of phosphorylation on the function of sHSPs and the association between sHSPs and disease.
Collapse
Affiliation(s)
- Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| |
Collapse
|
3
|
Bergougnoux A, Billet A, Ka C, Heller M, Degrugillier F, Vuillaume ML, Thoreau V, Sasorith S, Bareil C, Thèze C, Ferec C, Gac GL, Bienvenu T, Bieth E, Gaston V, Lalau G, Pagin A, Malinge MC, Dufernez F, Lemonnier L, Koenig M, Fergelot P, Claustres M, Taulan-Cadars M, Kitzis A, Reboul MP, Becq F, Fanen P, Mekki C, Audrezet MP, Girodon E, Raynal C. The multi-faceted nature of 15 CFTR exonic variations: Impact on their functional classification and perspectives for therapy. J Cyst Fibros 2022:S1569-1993(22)01423-0. [PMID: 36567205 DOI: 10.1016/j.jcf.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The majority of variants of unknown clinical significance (VUCS) in the CFTR gene are missense variants. While change on the CFTR protein structure or function is often suspected, impact on splicing may be neglected. Such undetected splicing default of variants may complicate the interpretation of genetic analyses and the use of an appropriate pharmacotherapy. METHODS We selected 15 variants suspected to impact CFTR splicing after in silico predictions on 319 missense variants (214 VUCS), reported in the CFTR-France database. Six specialized laboratories assessed the impact of nucleotide substitutions on splicing (minigenes), mRNA expression levels (quantitative PCR), synthesis and maturation (western blot), cellular localization (immunofluorescence) and channel function (patch clamp) of the CFTR protein. We also studied maturation and function of the truncated protein, consecutive to in-frame aberrant splicing, on additional plasmid constructs. RESULTS Six of the 15 variants had a major impact on CFTR splicing by in-frame (n = 3) or out-of-frame (n = 3) exon skipping. We reclassified variants into: splicing variants; variants causing a splicing defect and the impairment of CFTR folding and/or function related to the amino acid substitution; deleterious missense variants that impair CFTR folding and/or function; and variants with no consequence on the different processes tested. CONCLUSION The 15 variants have been reclassified by our comprehensive approach of in vitro experiments that should be used to properly interpret very rare exonic variants of the CFTR gene. Targeted therapies may thus be adapted to the molecular defects regarding the results of laboratory experiments.
Collapse
Affiliation(s)
- A Bergougnoux
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - A Billet
- Laboratoire STIM, Université de Poitiers, Poitiers, France
| | - C Ka
- Service de génétique moléculaire, CHRU Brest, Brest, France; Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - M Heller
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre - Université de Paris, Hôpital Cochin, Paris, France
| | - F Degrugillier
- Université Paris-Est Créteil, INSERM, IMRB, Créteil F-94010, France
| | - M-L Vuillaume
- Génétique Moléculaire, CHU Bordeaux, Bordeaux, France
| | - V Thoreau
- Laboratoire NEUVACOD-3808, Université de Poitiers, Poitiers, France
| | - S Sasorith
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France
| | - C Bareil
- Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Thèze
- Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Ferec
- Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - G Le Gac
- Service de génétique moléculaire, CHRU Brest, Brest, France; Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - T Bienvenu
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre - Université de Paris, Hôpital Cochin, Paris, France
| | - E Bieth
- Génétique Médicale, CHU Toulouse, Toulouse, France
| | - V Gaston
- Génétique Médicale, CHU Toulouse, Toulouse, France
| | - G Lalau
- Biochimie et Biologie Moléculaire, CHU Lille, Lille, France
| | - A Pagin
- Biochimie et Biologie Moléculaire, CHU Lille, Lille, France
| | - M-C Malinge
- Biochimie et Génétique, CHU Angers, Angers, France
| | - F Dufernez
- Génétique, CHU Poitiers, Poitiers, France
| | - L Lemonnier
- Association Vaincre la Mucoviscidose, Paris, France
| | - M Koenig
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - P Fergelot
- MRGM, INSERM UMR 1211 Université de Bordeaux, Bordeaux, France
| | - M Claustres
- Université de Montpellier, Montpellier, France
| | - M Taulan-Cadars
- PhyMedExp, INSERM, CNRS UMR, Montpellier, France; Université de Montpellier, Montpellier, France
| | - A Kitzis
- Génétique, CHU Poitiers, Poitiers, France
| | - M-P Reboul
- Génétique Moléculaire, CHU Bordeaux, Bordeaux, France
| | - F Becq
- Laboratoire STIM, Université de Poitiers, Poitiers, France
| | - P Fanen
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, Créteil F-94010, France
| | - C Mekki
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, Créteil F-94010, France
| | - M-P Audrezet
- Service de génétique moléculaire, CHRU Brest, Brest, France; Université de Brest, Inserm, UMR 1078, GGB, Brest, France
| | - E Girodon
- Service de Médecine Génomique des Maladies de Système et d'Organe, APHP Centre - Université de Paris, Hôpital Cochin, Paris, France; INSERM U1151, Institut Necker Enfants Malades, Université de Paris, Paris, France
| | - C Raynal
- Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp, INSERM, CNRS UMR, Montpellier, France.
| |
Collapse
|
5
|
Simon S, Aissat A, Degrugillier F, Simonneau B, Fanen P, Arrigo AP. Small Hsps as Therapeutic Targets of Cystic Fibrosis Transmembrane Conductance Regulator Protein. Int J Mol Sci 2021; 22:ijms22084252. [PMID: 33923911 PMCID: PMC8072646 DOI: 10.3390/ijms22084252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal and pathological cells. Here, we have reviewed the role played by HspB1, HspB4 and HspB5 in the context of Cystic Fibrosis (CF), a severe monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane conductance Regulator protein (CFTR) some of which trigger its misfolding and rapid degradation, particularly the most frequent one, F508del-CFTR. While HspB1 and HspB4 favor the degradation of CFTR mutants, HspB5 and particularly one of its phosphorylated forms positively enhance the transport at the plasma membrane, stability and function of the CFTR mutant. Moreover, HspB5 molecules stimulate the cellular efficiency of currently used CF therapeutic molecules. Different strategies are suggested to modulate the level of expression or the activity of these small heat shock proteins in view of potential in vivo therapeutic approaches. We then conclude with other small heat shock proteins that should be tested or further studied to improve our knowledge of CFTR processing.
Collapse
Affiliation(s)
- Stéphanie Simon
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Correspondence:
| | - Abdel Aissat
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Département de Génétique, AP-HP, Henri Mondor Hospital, F-94010 Creteil, France
| | - Fanny Degrugillier
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
| | - Benjamin Simonneau
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
| | - Pascale Fanen
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Département de Génétique, AP-HP, Henri Mondor Hospital, F-94010 Creteil, France
| | - André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Centre Léon Bérard, F-69008 Lyon, France;
| |
Collapse
|