1
|
Lipiński P, Tylki-Szymańska A. The Liver and Lysosomal Storage Diseases: From Pathophysiology to Clinical Presentation, Diagnostics, and Treatment. Diagnostics (Basel) 2024; 14:1299. [PMID: 38928715 PMCID: PMC11202662 DOI: 10.3390/diagnostics14121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The liver, given its role as the central metabolic organ, is involved in many inherited metabolic disorders, including lysosomal storage diseases (LSDs). The aim of this manuscript was to provide a comprehensive overview on liver involvement in LSDs, focusing on clinical manifestation and its pathomechanisms. Gaucher disease, acid sphingomyelinase deficiency, and lysosomal acid lipase deficiency were thoroughly reviewed, with hepatic manifestation being a dominant clinical phenotype. The natural history of liver disease in the above-mentioned lysosomal disorders was delineated. The importance of Niemann-Pick type C disease as a cause of cholestatic jaundice, preceding neurological manifestation, was also highlighted. Diagnostic methods and current therapeutic management of LSDs were also discussed in the context of liver involvement.
Collapse
Affiliation(s)
- Patryk Lipiński
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| |
Collapse
|
2
|
Guan L, Jia Z, Xu K, Yang M, Li X, Qiao L, Liu Y, Lin J. Npc1 gene mutation abnormally activates the classical Wnt signalling pathway in mouse kidneys and promotes renal fibrosis. Anim Genet 2024; 55:99-109. [PMID: 38087834 DOI: 10.1111/age.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024]
Abstract
Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.
Collapse
Affiliation(s)
- Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Noninvasive Neuromodulation, Xinxiang, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Tao C, Zhao M, Zhang X, Hao J, Huo Q, Sun J, Xing J, Zhang Y, Zhao J, Huang H. Novel compound heterozygous mutations of the NPC1 gene associated with Niemann-pick disease type C: a case report and review of the literature. BMC Infect Dis 2024; 24:145. [PMID: 38291356 PMCID: PMC10826013 DOI: 10.1186/s12879-024-09025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Niemann-Pick Disease type C is a fatal autosomal recessive lipid storage disorder caused by NPC1 or NPC2 gene mutations and characterized by progressive, disabling neurological deterioration and hepatosplenomegaly. Herein, we identified a novel compound heterozygous mutations of the NPC1 gene in a Chinese pedigree. CASE PRESENTATION This paper describes an 11-year-old boy with aggravated walking instability and slurring of speech who presented as Niemann-Pick Disease type C. He had the maternally inherited c.3452 C > T (p. Ala1151Val) mutation and the paternally inherited c.3557G > A (p. Arg1186His) mutation using next-generation sequencing. The c.3452 C > T (p. Ala1151Val) mutation has not previously been reported. CONCLUSIONS This study predicted that the c.3452 C > T (p. Ala1151Val) mutation is pathogenic. This data enriches the NPC1 gene variation spectrum and provides a basis for familial genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Chaoxin Tao
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Zhang
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jihong Hao
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiuyue Huo
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Sun
- Department of Ultrasound Diagnosis of Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiangtao Xing
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuna Zhang
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Huaipeng Huang
- Department of Internal Medicine, Shijiazhuang Ping'an Hospital, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Dursun FE, Özen F. SMPD1 gene variants in patients with β-Thalassemia major. Mol Biol Rep 2023; 50:3355-3363. [PMID: 36725747 PMCID: PMC10042979 DOI: 10.1007/s11033-023-08275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND β-thalassemia major and Niemann-Pick diseases have similar clinical and laboratory findings. We aimed to investigate the effects of sphingomyelin phosphodiesterase 1 (SMPD1) gene variants on the clinical and laboratory findings in patients with β-thalassemia major. METHODS AND RESULTS This study included 45 patients who were followed up for β-thalassemia major in our clinic. Plasma chitotriosidase, leukocyte acid sphingomyelinase, liver enzymes, ferritin, hemogram, biochemical parameters, SMPD1 gene variant analysis, cardiac T2* MRI, and liver R2 MRI were assessed in all patients. The SMPD1 gene c.132_143del, p.A46_L49del (c.108GCTGGC[4] (p.38AL[4])) (rs3838786) variant was detected in 9 of 45 (20.0%) patients. Plasma chitotriosidase, ferritin, acetyl aminotransferase, and alanine aminotransferase levels were significantly higher in patients with the gene variant than in those without (p < 0.05). Leukocyte acid sphingomyelinase levels were significantly lower in patients with the gene variant than in those without (p < 0.05). CONCLUSION These results imply that the clinical and laboratory findings and some features of disease progression in patients with β-thalassemia major are similar to those of Niemann-Pick disease. They also suggest that SMPD1 gene c.132_143del, p.A46_L49del (c.108GCTGGC[4] (p.38AL[4])) (rs3838786) variant may underlie these clinical findings in patients with β-thalassemia major.
Collapse
Affiliation(s)
- Fadime Ersoy Dursun
- Department of Hematology, Prof. Dr. Süleyman Yalçın City Hospital, Eğitim mah, Dr. Erkin Cd. No:161/1, 34722, Kadıköy, İstanbul, Turkey.
| | - Filiz Özen
- Department of Medical Genetics, Prof. Dr. Süleyman Yalçın City Hospital, Kadıköy, İstanbul, Turkey
| |
Collapse
|
5
|
Hwang S, Choi Y, Lee BH, Choi J, Kim JH, Yoo H. Pediatric hepatocellular carcinoma associated with Niemann-Pick disease type C: Case report and literature review. JIMD Rep 2023; 64:27-34. [PMID: 36636588 PMCID: PMC9830012 DOI: 10.1002/jmd2.12344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, lysosomal storage disease, resulting from mutations in the cholesterol trafficking proteins NPC1 or NPC2, which is characterized by progressive neurodegeneration and hepatic dysfunction. The hepatic involvement in NPC is usually neonatal cholestasis and hepatosplenomegaly. Only a few cases of severe hepatic complications were reported including acute liver failure, cirrhosis, and hepatocellular carcinoma (HCC). We described the case of a 6-year-old male with NPC with HCC. He had a history of neonatal cholestasis and motor delay. At the age of 6 months, he was diagnosed with NPC, which was confirmed by the detection of a compound heterozygous NPC1 mutation (p.C113Y/p.A927V). He presented recurrent hypoglycemia and abdominal distension. An ultrasound, computed tomography scan, and biopsy revealed that he had a stage IV HCC with pulmonary metastasis. With the literature review and this case, HCC can be a rare fatal comorbid condition in patients with NPC, particularly infantile-onset, male patients with a relatively long disease history, necessitating appropriate HCC surveillance.
Collapse
Affiliation(s)
- Soojin Hwang
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Yunha Choi
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Medical Genetics Center, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Jin‐Ho Choi
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Han‐Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
- Medical Genetics Center, Asan Medical Center Children's HospitalUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
6
|
Azab B, Rabab’h O, Aburizeg D, Mohammad H, Dardas Z, Mustafa L, Khasawneh RA, Awad H, Hatmal MM, Altamimi E. Potential Composite Digenic Contribution of NPC1 and NOD2 Leading to Atypical Lethal Niemann-Pick Type C with Initial Crohn’s Disease-like Presentation: Genotype-Phenotype Correlation Study. Genes (Basel) 2022; 13:genes13060973. [PMID: 35741735 PMCID: PMC9223108 DOI: 10.3390/genes13060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is an autosomal recessive neurovisceral disease characterized by progressive neurodegeneration with variable involvement of multisystemic abnormalities. Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with a multifactorial etiology influenced by variants in NOD2. Here, we investigated a patient with plausible multisystemic overlapping manifestations of both NPC and CD. Her initial hospitalization was due to a prolonged fever and non-bloody diarrhea. A few months later, she presented with recurrent skin tags and anal fissures. Later, her neurological and pulmonary systems progressively deteriorated, leading to her death at the age of three and a half years. Differential diagnosis of her disease encompassed a battery of clinical testing and genetic investigations. The patient’s clinical diagnosis was inconclusive. Specifically, the histopathological findings were directed towards an IBD disease. Nevertheless, the diagnosis of IBD was not consistent with the patient’s subsequent neurological and pulmonary deterioration. Consequently, we utilized a genetic analysis approach to guide the diagnosis of this vague condition. Our phenotype–genotype association attempts led to the identification of candidate disease-causing variants in both NOD2 and NPC1. In this study, we propose a potential composite digenic impact of these two genes as the underlying molecular etiology. This work lays the foundation for future functional and mechanistic studies to unravel the digenic role of NOD2 and NPC1.
Collapse
Affiliation(s)
- Bilal Azab
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
- Correspondence: (B.A.); (E.A.)
| | - Omar Rabab’h
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Dunia Aburizeg
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Hashim Mohammad
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Lina Mustafa
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Ruba A. Khasawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Heyam Awad
- Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (D.A.); (H.M.); (L.M.); (H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Eyad Altamimi
- Pediatric Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (B.A.); (E.A.)
| |
Collapse
|
7
|
Bulut FD, Bozbulut NE, Özalp Ö, Dalgiç B, Mungan NÖ, Koç Uçar H, Biberoğlu G. Diagnostic value of plasma lysosphingolipids levels in a Niemann-Pick disease type C patient with transient neonatal cholestasis. J Pediatr Endocrinol Metab 2022; 35:681-685. [PMID: 35107903 DOI: 10.1515/jpem-2021-0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Niemann-Pick disease type C (NPC) is a lysosomal storage disease due to impaired intracellular lipid trafficking caused by biallelic pathogenic variants in NPC1 or NPC2 genes. NPC is classified according to the age of onset of neurological manifestations. Cholestatic liver disease can be transient or lead to liver failure. Accompanying neurological findings can be observed at any age. In this report, an infant with a homozygous pathogenic variant in NPC1 gene whose diagnosis was eventually confirmed by specific biomarkers is described. CASE PRESENTATION A sixteen-day-old male was admitted to hospital with prolonged jaundice. He had mild hepatosplenomegaly, conjugated hyperbilirubinemia, elevated liver transaminases, and mild hypoalbuminemia. Cholestasis resolved spontaneously and patient was readmitted due to progressive hepatosplenomegaly without any neurologic findings when he was 8 months old. Molecular investigations detected homozygous c.1123A > C (p.Thr375Pro) pathogenic variant in NPC1 gene. NPC-specific lysosomal biomarkers such as Lysosphingomyelin and Lysosphingomyelin-509 were elevated, confirming the diagnosis. CONCLUSIONS The clinical features of NPC are highly heterogeneous, from disease severity or age of onset to disease progression. Patients presenting with transient neonatal cholestasis and should be regularly followed for neurodevelopmental status and visceromegaly. In the case of variants of unknown significance in NPC1 gene, lysosomal biomarkers play an important role when genetic analyses are inconclusive.
Collapse
Affiliation(s)
- Fatma Derya Bulut
- Pediatric Metabolism Department, Adana City Research and Education Hospital, Adana, Turkey
| | - Neslihan Ekşi Bozbulut
- Pediatric Gastroenterology and Hepatology Department, Antakya Research and Education Hospital, Antakya, Hatay, Turkey
| | - Özge Özalp
- Genetics Department, Adana City Research and Education Hospital, Adana, Turkey
| | - Buket Dalgiç
- Pediatric Gastroenterology and Hepatology Department, Gazi University, Ankara, Turkey
| | | | - Habibe Koç Uçar
- Pediatric Neurology Department, Adana City Research and Education Hospital, Adana, Turkey
| | | |
Collapse
|
8
|
Kılıç Yıldırım G, Yarar C, Şeker Yılmaz B, Ceylaner S. Niemann-Pick type C disease with a novel intronic mutation: three Turkish cases from the same family. J Pediatr Endocrinol Metab 2022; 35:535-541. [PMID: 34883004 DOI: 10.1515/jpem-2021-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Niemann-Pick type C (NPC) disease is a rare progressive neurodegenerative condition that is characterized by the accumulation of cholesterol, glycosphingolipids, and sphingosine in lysosomes. Patients have various systemic and neurological findings depending on their age at onset. This disease is caused by the autosomal recessive transmission of mutations in the NPC1 and NPC2 genes; patients have mutations mainly in the NPC1 gene (95%) and the majority of them are point mutations located in the exonic regions. CASE PRESENTATION Here, we presented three cousins with hepatosplenomegaly and progressive neurodegeneration who were diagnosed with visceral-neurodegenerative NPC disease. Their parents were relatives, and they had a history of sibling death with similar complaints. Bone marrow smear showed foamy cells in patient 1. Vertical supranuclear gaze palsy was not present in all cases. Sphingomyelinase (SM) activities were almost normal to exclude NPA or NPB. Filipin staining was performed in patient 2 and showed a massive accumulation of unesterified cholesterol The NPC1 gene analysis of the three patients showed a novel homozygous c.1553+5G>A intronic mutation. cDNA analysis was performed from the patient 3 and both parents. It was observed that exon 9 was completely skipped in the homozygous mutant baby. Both the normal and the exon 9-skipped transcripts have been detected in the parents. CONCLUSIONS When combined with the filipin staining and the patients' clinical outcomes, this mutation is likely to be deleterious. Moreover, cDNA sequencing supports the pathogenicity of this novel variant.
Collapse
Affiliation(s)
- Gonca Kılıç Yıldırım
- Division of Child Nutrition and Metabolism, Department of Paediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Coşkun Yarar
- Division of Pediatric Neurology, Department of Paediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Berna Şeker Yılmaz
- UCL Institute of Child Health, Genetics and Genomics Medicine, London, UK
| | | |
Collapse
|
9
|
Kraus D, Abdelrahim H, Waisbourd-Zinman O, Domin E, Zeharia A, Staretz-Chacham O. Elevated Alpha-Fetoprotein in Infantile-Onset Niemann-Pick Type C Disease with Liver Involvement. CHILDREN 2022; 9:children9040545. [PMID: 35455589 PMCID: PMC9032157 DOI: 10.3390/children9040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare autosomal recessive neuro-visceral lipid storage disease. We describe nine cases of infantile-onset NPC with various genetic mutations in the NPC1 gene, which presented with neonatal cholestasis. Serum alpha-fetoprotein (AFP) levels were obtained as part of their workup during the first four months of life. In eight of nine (89%) patients, serum AFP demonstrated elevated levels. Seven infants displayed marked elevations, ranging from 4 to 300 times the upper limit for age-adjusted norms. In most patients, AFP levels peaked during the initial test and declined over time as cholestasis resolved. We conclude that elevated AFP levels are a common, although non-specific, marker for NPC-associated liver disease. These findings demonstrate the benefit of including AFP levels in the workup of neonatal liver disease, especially if there is accompanied cholestasis and if NPC is suspected.
Collapse
Affiliation(s)
- Dror Kraus
- Institute of Neurology, Schneider Children’s Medical Center of Israel, Petach-Tikva 4920235, Israel; (D.K.); (H.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (O.W.-Z.); (A.Z.)
| | - Huda Abdelrahim
- Institute of Neurology, Schneider Children’s Medical Center of Israel, Petach-Tikva 4920235, Israel; (D.K.); (H.A.)
| | - Orith Waisbourd-Zinman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (O.W.-Z.); (A.Z.)
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Elena Domin
- Clinical Biochemistry (Metabolic) Laboratory, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Avraham Zeharia
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (O.W.-Z.); (A.Z.)
- Day Hospitalization Department, Schneider Children’s Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Orna Staretz-Chacham
- Pediatric Metabolic Clinic, Pediatric Division, Soroka Medical Center, Ben-Gurion University, Beer Sheva 8480101, Israel
- Correspondence: ; Tel.: +972-8-6400508; Fax: +972-8-6400545
| |
Collapse
|
10
|
Genetic and phenotypic variability in adult patients with Niemann Pick type C from Serbia: single-center experience. J Neurol 2022; 269:3167-3174. [PMID: 34993563 DOI: 10.1007/s00415-021-10918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Niemann Pick type C is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 and NPC2 genes. It is a neuro-visceral disease with a heterogeneous phenotype. Clinical features depend on the age at onset. Visceral manifestations are more prominent in the early onset (infantile) form, while neuro-psychiatric symptoms are more prominent in the late disease onset (juvenile and adult forms). METHODS A total number of 150 patients have been screened for changes in NPC1 and NPC2 gene at the Neurology Clinic, University Clinical Centre of Serbia in the period 2012-2020. Clinical data were extracted for patients with biallelic mutations. RESULTS Fifteen patients carried biallelic mutations in the NPC1. Out of eight different reported NPC1 variants, four are novel (c.1204_1205TT>GC, p.F402A; c.2486T>G, p.L829R; c.2795+5 G>C; c.3722T>A, p.L1241*). The mean age at the disease onset was 20.3 ± 11.9 years with the average diagnostic delay of 7.7 ± 4.3 years. Movement disorders and psychiatric or cognitive disturbances were the most common initial symptoms (in 33% and 28% patients, respectively). The average age at the first neurological manifestation was 21 ± 12.0 years. At the last examination, eye movement abnormalities (vertical slow saccades or vertical supranuclear gaze palsy), and ataxia were present in all patients, while dystonia was common (in 78.6% of patients). Presence of c.2861C>T, p.S954L mutation in homozygous state was associated with older age at the neurological symptom onset. CONCLUSIONS Clinical findings were in line with the expected, but the diagnostic delay was common. We hypothesize that the presence of c.2861C>T, p.S954L mutation may contribute to the phenotype attenuation.
Collapse
|
11
|
Dweikat I, Thaher O, Abosleem A, Zeer A, Mokh AA. Niemann-Pick disease type C in Palestine: genotype and phenotype of sixteen patients and report of a novel mutation in the NPC1 gene. BMC Med Genomics 2021; 14:228. [PMID: 34535129 PMCID: PMC8449430 DOI: 10.1186/s12920-021-01072-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is an autosomal recessive, neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. Mutations in these genes are associated with abnormal endosomal-lysosomal trafficking, resulting in the accumulation of tissue-specific lipids in lysosomes. METHODS We described sixteen patients with NPC diagnosed between the age of 1 month and 30 years at two tertiary care centers in Palestine. The clinical phenotype, brain magnetic resonance imaging (MRI), and molecular genetic analysis data were reviewed. RESULTS The diagnosis was confirmed by molecular analysis in all patients. Fourteen out of sixteen patients were homozygous for the NPC1 p.G992W variant. Among them, most were categorized as having the late-infantile neurological form of disease onset. They predominantly manifested with early-onset visceral manifestations in the form of hepatosplenomegaly and prolonged neonatal jaundice, and late-onset neuropsychiatric manifestations in the form of vertical supranuclear gaze palsy (VSGP), ataxia, cognitive impairment and seizures. Brain MRI in 6 patients was normal in 5 or consistent with cerebellar hemisphere atrophy in 1 of them. Two other mutations were identified in the NPC1 gene, of which p.V845Cfs*24 was novel. CONCLUSIONS Our results revealed phenotypic heterogeneity of NPC even within the same genotype, and add to the increasingly recognized evidence that cholestatic jaundice and hepatosplenomegaly during infancy, should alert the physician for the possibility of NPC. We reported a novel mutation in the NPC1 gene further expanding its genotype.
Collapse
Affiliation(s)
- Imad Dweikat
- Metabolic Department, Faculty of Medicine, Arab American University, P.O. Box 240, Jenin, West Bank Palestine
| | - Othman Thaher
- Pediatric Department, Faculty of Medicine, Al-Quds University, Abu-Dies, West Bank Palestine
| | - Abdulrahman Abosleem
- Pediatric Department, Faculty of Medicine, Al-Quds University, Abu-Dies, West Bank Palestine
| | - Almotazbellah Zeer
- Pediatric Department, Faculty of Medicine, Al-Quds University, Abu-Dies, West Bank Palestine
| | - Ameer Abo Mokh
- Pediatric Department, Faculty of Medicine, Al-Quds University, Abu-Dies, West Bank Palestine
| |
Collapse
|
12
|
Burton BK, Ellis AG, Orr B, Chatlani S, Yoon K, Shoaff JR, Gallo D. Estimating the prevalence of Niemann-Pick disease type C (NPC) in the United States. Mol Genet Metab 2021; 134:182-187. [PMID: 34304992 DOI: 10.1016/j.ymgme.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Niemann-Pick Disease Type C (NPC) is an ultra-rare progressive neurodegenerative disease caused by autosomal recessive mutations in the NPC1 or NPC2 genes that lead to premature death, with most individuals dying between 10 and 25 years of age. NPC can present at any age and many individuals with NPC may be misdiagnosed or undiagnosed. A key challenge with recognizing NPC is the heterogeneous and nonspecific clinical presentation. Currently, there are no approved treatments for NPC in the United States; miglustat, an FDA-approved treatment for Gaucher disease, is used off-label for NPC and GM1 gangliosidosis. OBJECTIVES To estimate the number of people in the United States that 1) have an NPC diagnosis 2) have an NPC diagnosis and/or are treated off-label with miglustat for NPC and 3) are likely to have NPC. METHODS For the first two objectives, patients were identified using the Symphony Integrated DataVerse database (Oct 2015-Jan 2020). To identify the number of people with NPC for Objective 1, cases of NPC were defined as any patients with an ICD-10 code of E75.242 (NPC) during the study period. Objective 2 expands upon Objective 1, including (a) patients from Objective 1 and (b) patients with documented miglustat use (NDC 43975-0310 or 10,148-0201) who did not have any claim with Gaucher disease (ICD-10 E75.22) or GM1 gangliosidosis (ICD-10 E75.1) during the study period. For the third objective, published NPC incidence (1 per 89,000 live births) and expected mortality estimates were applied to the 2018 United States birth rate (11.6 per 1000) and population size (326.7 million). RESULTS A total of 308 million unique individuals were represented in the database. Of these, 294 individuals had an NPC diagnosis, yielding an identified NPC prevalence of 0.95 per million people in the United States. 305 individuals were diagnosed with NPC and/or were treated with miglustat without having a diagnosis for either Gaucher or GM1 gangliosidosis, yielding an NPC diagnosed or treated prevalence of 0.99 per million people in the United States. Based on the published literature, there are an estimated 42 new NPC cases per year. Applying this number to the distribution of NPC type (based on age of neurologic symptom onset) and corresponding mortality estimates generates an estimated 943 prevalent cases of NPC, or 2.9 cases of NPC per million people in the United States. CONCLUSIONS NPC is an ultra-rare, progressive neurodegenerative disease with approximately 1 per million people in the United States diagnosed with or treated off-label for NPC. Given that NPC is often misdiagnosed or undiagnosed, the estimated prevalence from the epidemiology calculations (2.9 per million) approximates the number of NPC cases if disease awareness, screening and diagnosis efforts were enhanced.
Collapse
Affiliation(s)
- Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States of America
| | | | - Blair Orr
- Orphazyme USA, Inc., Chicago, IL, United States of America
| | | | - Kwangchae Yoon
- Orphazyme USA, Inc., Chicago, IL, United States of America
| | | | - Dan Gallo
- Orphazyme USA, Inc., Chicago, IL, United States of America.
| |
Collapse
|
13
|
Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J. npc2-Deficient Zebrafish Reproduce Neurological and Inflammatory Symptoms of Niemann-Pick Type C Disease. Front Cell Neurosci 2021; 15:647860. [PMID: 33986646 PMCID: PMC8111220 DOI: 10.3389/fncel.2021.647860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.
Collapse
Affiliation(s)
- Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dobrochna Adamek-Urbanska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iga Wasilewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Liedtke M, Völkner C, Jürs AV, Peter F, Rabenstein M, Hermann A, Frech MJ. Pathophysiological In Vitro Profile of Neuronal Differentiated Cells Derived from Niemann-Pick Disease Type C2 Patient-Specific iPSCs Carrying the NPC2 Mutations c.58G>T/c.140G>T. Int J Mol Sci 2021; 22:ijms22084009. [PMID: 33924575 PMCID: PMC8069078 DOI: 10.3390/ijms22084009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick type C2 (NP-C2) disease is a rare hereditary disease caused by mutations in the NPC2 gene. NPC2 is a small, soluble protein consisting of 151 amino acids, primarily expressed in late endosomes and lysosomes (LE/LY). Together with NPC1, a transmembrane protein found in these organelles, NPC2 accomplishes the exclusion of cholesterol; thus, both proteins are essential to maintain cellular cholesterol homeostasis. Consequently, mutations in the NPC2 or NPC1 gene result in pathophysiological accumulation of cholesterol and sphingolipids in LE/LY. The vast majority of Niemann-Pick type C disease patients, 95%, suffer from a mutation of NPC1, and only 5% display a mutation of NPC2. The biochemical phenotype of NP-C1 and NP-C2 appears to be indistinguishable, and both diseases share several commonalities in the clinical manifestation. Studies of the pathological mechanisms underlying NP-C2 are mostly based on NP-C2 animal models and NP-C2 patient-derived fibroblasts. Recently, we established induced pluripotent stem cells (iPSCs), derived from a donor carrying the NPC2 mutations c.58G>T/c.140G>T. Here, we present a profile of pathophysiological in vitro features, shared by NP-C1 and NP-C2, of neural differentiated cells obtained from the patient specific iPSCs. Profiling comprised a determination of the NPC2 protein level, detection of cholesterol accumulation by filipin staining, analysis of oxidative stress, and determination of autophagy. As expected, the NPC2-deficient cells displayed a significantly reduced amount of NPC2 protein, and, accordingly, we observed a significantly increased amount of cholesterol. Most notably, NPC2-deficient cells displayed only a slight increase of reactive oxygen species (ROS), suggesting that they do not suffer from oxidative stress and express catalase at a high level. As a site note, comparable NPC1-deficient cells suffer from a lack of catalase and display an increased level of ROS. In summary, this cell line provides a valuable tool to gain deeper understanding, not only of the pathogenic mechanism of NP-C2, but also of NP-C1.
Collapse
Affiliation(s)
- Maik Liedtke
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Alexandra V. Jürs
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Franziska Peter
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Michael Rabenstein
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- Correspondence:
| |
Collapse
|
15
|
Wei J, Takamatsu Y, Wada R, Fujita M, Ho G, Masliah E, Hashimoto M. Therapeutic Potential of αS Evolvability for Neuropathic Gaucher Disease. Biomolecules 2021; 11:biom11020289. [PMID: 33672048 PMCID: PMC7919466 DOI: 10.3390/biom11020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by autosomal recessive mutations of the glucocerebrosidase gene, GBA1. In the majority of cases, GD has a non-neuropathic chronic form with adult onset (GD1), while other cases are more acute and severer neuropathic forms with early onset (GD2/3). Currently, no radical therapies are established for GD2/3. Notably, GD1, but not GD2/3, is associated with increased risk of Parkinson's disease (PD), the elucidation of which might provide a clue for novel therapeutic strategies. In this context, the objective of the present study is to discuss that the evolvability of α-synuclein (αS) might be differentially involved in GD subtypes. Hypothetically, aging-associated PD features with accumulation of αS, and the autophagy-lysosomal dysfunction might be an antagonistic pleiotropy phenomenon derived from αS evolvability in the development in GD1, without which neuropathies like GD2/3 might be manifested due to the autophagy-lysosomal dysfunction. Supposing that the increased severity of GD2/3 might be attributed to the decreased activity of αS evolvability, suppressing the expression of β-synuclein (βS), a potential buffer against αS evolvability, might be therapeutically efficient. Of interest, a similar view might be applicable to Niemann-Pick type C (NPC), another LSD, given that the adult type of NPC, which is comorbid with Alzheimer's disease, exhibits milder medical symptoms compared with those of infantile NPC. Thus, it is predicted that the evolvability of amyloid β and tau, might be beneficial for the adult type of NPC. Collectively, a better understanding of amyloidogenic evolvability in the pathogenesis of LSD may inform rational therapy development.
Collapse
Affiliation(s)
- Jianshe Wei
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; (J.W.); (Y.T.); (R.W.); (M.F.)
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; (J.W.); (Y.T.); (R.W.); (M.F.)
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; (J.W.); (Y.T.); (R.W.); (M.F.)
| | - Masayo Fujita
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; (J.W.); (Y.T.); (R.W.); (M.F.)
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA 92064, USA;
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan; (J.W.); (Y.T.); (R.W.); (M.F.)
- Correspondence: ; Tel.: +81-3-6834-2354; Fax: +81-3-5316-3150
| |
Collapse
|
16
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
17
|
Mengel E, Bembi B, Del Toro M, Deodato F, Gautschi M, Grunewald S, Grønborg S, Héron B, Maier EM, Roubertie A, Santra S, Tylki-Szymanska A, Day S, Symonds T, Hudgens S, Patterson MC, Guldberg C, Ingemann L, Petersen NHT, Kirkegaard T, Í Dali C. Clinical disease progression and biomarkers in Niemann-Pick disease type C: a prospective cohort study. Orphanet J Rare Dis 2020; 15:328. [PMID: 33228797 PMCID: PMC7684888 DOI: 10.1186/s13023-020-01616-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Background Niemann–Pick disease type C (NPC) is a rare, progressive, neurodegenerative disease associated with neurovisceral manifestations resulting from lysosomal dysfunction and aberrant lipid accumulation. A multicentre, prospective observational study (Clinical Trials.gov ID: NCT02435030) of individuals with genetically confirmed NPC1 or NPC2 receiving routine clinical care was conducted, to prospectively characterize and measure NPC disease progression and to investigate potential NPC-related biomarkers versus healthy individuals. Progression was measured using the abbreviated 5-domain NPC Clinical Severity Scale (NPCCSS), 17-domain NPCCSS and NPC clinical database (NPC-cdb) score. Cholesterol esterification and heat shock protein 70 (HSP70) levels were assessed from peripheral blood mononuclear cells (PBMCs), cholestane-3β,5α-,6β-triol (cholestane-triol) from serum, and unesterified cholesterol from both PBMCs and skin biopsy samples. The inter- and intra-rater reliability of the 5-domain NPCCSS was assessed by 13 expert clinicians’ rating of four participants via video recordings, repeated after ≥ 3 weeks. Intraclass correlation coefficients (ICCs) were calculated. Results Of the 36 individuals with NPC (2–18 years) enrolled, 31 (86.1%) completed the 6–14-month observation period; 30/36 (83.3%) were receiving miglustat as part of routine clinical care. A mean (± SD) increase in 5-domain NPCCSS scores of 1.4 (± 2.9) was observed, corresponding to an annualized progression rate of 1.5. On the 17-domain NPCCSS, a mean (± SD) progression of 2.7 (± 4.0) was reported. Compared with healthy individuals, the NPC population had significantly lower levels of cholesterol esterification (p < 0.0001), HSP70 (p < 0.0001) and skin unesterified cholesterol (p = 0.0006). Cholestane-triol levels were significantly higher in individuals with NPC versus healthy individuals (p = 0.008) and correlated with the 5-domain NPCCSS (Spearman’s correlation coefficient = 0.265, p = 0.0411). The 5-domain NPCCSS showed high ICC agreement in inter-rater reliability (ICC = 0.995) and intra-rater reliability (ICC = 0.937). Conclusions Progression rates observed were consistent with other reports on disease progression in NPC. The 5-domain NPCCSS reliability study supports its use as an abbreviated alternative to the 17-domain NPCCSS that focuses on the most relevant domains of the disease. The data support the use of cholestane-triol as a disease monitoring biomarker and the novel methods of measuring unesterified cholesterol could be applicable to support NPC diagnosis. Levels of HSP70 in individuals with NPC were significantly decreased compared with healthy individuals. Trial registration CT-ORZY-NPC-001: ClincalTrials.gov NCT02435030, Registered 6 May 2015, https://clinicaltrials.gov/ct2/show/NCT02435030; EudraCT 2014–005,194-37, Registered 28 April 2015, https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-005194-37/DE. OR-REL-NPC-01: Unregistered.
Collapse
Affiliation(s)
- Eugen Mengel
- SphinCS GmbH, Institute of Clinical Science for LSD, Hochheim, Germany.
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria Della Misericordia, Udine, Italy
| | | | | | | | - Stephanie Grunewald
- Metabolic Department, Great Ormond Street Hospital NHS Foundation Trust, Institute for Child Health, NIHR Biomedical Research Centre UCL, London, UK
| | - Sabine Grønborg
- Centre for Inherited Metabolic Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Bénédicte Héron
- Reference Centre for Lysosomal Disease, Trousseau University Hospital, Paris, France
| | - Esther M Maier
- Dr. Von Hauner Children's Hospital, University of Munich, Munich, Germany
| | - Agathe Roubertie
- Institute of Neurosciences, University Hospital of Montpellier, Montpellier, France
| | | | | | - Simon Day
- Clinical Trials Consulting & Training Limited, Buckingham, UK
| | - Tara Symonds
- Clinical Outcomes Solutions Limited, Folkestone, UK
| | | | | | | | | | | | | | | |
Collapse
|