1
|
Makowska K, Całka J, Gonkowski S. Effects of the long-term influence of bisphenol A and bisphenol S on the population of nitrergic neurons in the enteric nervous system of the mouse stomach. Sci Rep 2023; 13:331. [PMID: 36609592 PMCID: PMC9822927 DOI: 10.1038/s41598-023-27511-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor commonly used in the production of plastics. Due to its relatively well-known harmful effects on living organisms, BPA is often replaced by its various analogues. One of them is bisphenol S (BPS), widely used in the plastics industry. Until recently, BPS was considered completely safe, but currently, it is known that it is not safe for various internal organs. However, knowledge about the influence of BPS on the nervous system is scarce. Therefore, the aim of this study was to investigate the influence of two doses of BPA and BPS on the enteric nitrergic neurons in the CD1 strain mouse stomach using the double-immunofluorescence technique. The study found that both substances studied increased the number of nitrergic neurons, although changes under the impact of BPS were less visible than those induced by BPA. Therefore, the obtained results, for the first time, clearly indicate that BPS is not safe for the innervation of the gastrointestinal tract.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland.
| | - Jarosław Całka
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Sławomir Gonkowski
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
2
|
Low-Concentration T-2 Toxin Attenuates Pseudorabies Virus Replication in Porcine Kidney 15 Cells. Toxins (Basel) 2022; 14:toxins14020121. [PMID: 35202147 PMCID: PMC8876018 DOI: 10.3390/toxins14020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudorabies, caused by pseudorabies virus (PRV), is the main highly infectious disease that severely affects the pig industry globally. T-2 toxin (T2), a significant mycotoxin, is widely spread in food and feeds and shows high toxicity to mammals. The potential mechanism of the interaction between viruses and toxins is of great research value because revealing this mechanism may provide new ideas for their joint prevention and control. In this study, we investigated the effect of T2 on PRV replication and the mechanism of action. The results showed that at a low dose (10 nM), T2 had no significant effect on porcine kidney 15 (PK15) cell viability. However, this T2 concentration alleviated PRV-induced cell injury and increased cell survival time. Additionally, the number of PK15 cells infected with PRV significantly reduced by T2 treatment. Similarly, T2 significantly decreased the copy number of PRV. Investigation of the mechanism revealed that 10 nM T2 significantly inhibits PRV replication and leads to downregulation of oxidative stress- and apoptosis-related genes. These results suggest that oxidative stress and apoptosis are involved in the inhibition of PRV replication in PK15 cells by low-concentration T2. Taken together, we demonstrated the protective effects of T2 against PRV infection. A low T2 concentration inhibited the replication of PRV in PK15 cells, and this process was accompanied by downregulation of the oxidative stress and apoptosis signaling pathways. Our findings partly explain the interaction mechanism between T2 and PRV, relating to oxidative stress and apoptosis, though further research is required.
Collapse
|
3
|
Huang L, Zhu L, Ou Z, Ma C, Kong L, Huang Y, Chen Y, Zhao H, Wen L, Wu J, Yuan Z, Yi J. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int Immunopharmacol 2021; 101:108210. [PMID: 34628148 DOI: 10.1016/j.intimp.2021.108210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpenoid compound with potential antioxidant and anti-inflammatory effects. In this study, T-2 toxin was injected intraperitoneally in mice to establish kidney damage model and to evaluate the protective effects of BA and further reveal the molecular mechanism. BA pretreatment inhibited the T-2 toxin-stimulated increase in serum Crea, but showed no significant effect on serum Urea. BA pretreatment alleviated excessive glomerular hemorrhage and inflammatory cell infiltration in kidneys caused by T-2 toxin. Moreover, pretreatment with BA mitigated T-2 toxin-induced renal oxidative damage by up-regulating the activities of SOD and CAT, and the content of GSH, while down-regulating the accumulation of ROS and MDA. Meanwhile, BA pretreatment markedly attenuated T-2 toxin-induced renal inflammatory response by decreasing the mRNA expression of IL-1β, TNF-α and IL-10, and increasing IL-6 mRNA expression. Furthermore, mechanism research found that pretreatment with BA could activate Nrf2 signaling pathway. It was suggested that BA ameliorated the oxidative stress and inflammatory response of T-2 toxin-triggered renal damage by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Chaoyang Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| |
Collapse
|
4
|
Rytel L, Gonkowski I, Grzegorzewski W, Wojtkiewicz J. Chemically-Induced Inflammation Changes the Number of Nitrergic Nervous Structures in the Muscular Layer of the Porcine Descending Colon. Animals (Basel) 2021; 11:ani11020394. [PMID: 33557027 PMCID: PMC7913632 DOI: 10.3390/ani11020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The enteric nervous system (ENS) is the part of the nervous system that is located in the wall of the gastrointestinal tract and regulates the majority of the functions of the stomach and intestine. The ENS is characterized by a complex structure and a high degree of independence from the brain. It is known that the ENS changes under the impact of physiological and pathological stimuli. One of the active substances synthetized by enteric neurons is nitric oxide (NO), which is involved in the regulation of intestinal motility, blood flow, secretory activity, and immunological processes in the gastrointestinal tract. In the present study, the influence of chemically-induced inflammatory process on a number of nitrergic neuronal structures located in the muscular layer of the descending colon is investigated. An increase in the number of structures that nitric oxide takes part in is correlated with the inflammatory processes. Abstract The enteric nervous system (ENS) is the part of the nervous system that is located in the wall of the gastrointestinal tract and regulates the majority of the functions of the stomach and intestine. Enteric neurons may contain various active substances that act as neuromediators and/or neuromodulators. One of them is a gaseous substance, namely nitric oxide (NO). It is known that NO in the gastrointestinal (GI) tract may possess inhibitory functions; however, many of the aspects connected with the roles of this substance, especially during pathological states, remain not fully understood. An experiment is performed here with 15 pigs divided into 3 groups: C group (without any treatment), C1 group (“sham” operated), and C2 group, in which experimental inflammation was induced. The aim of this study is to investigate the influence of inflammation on nitrergic nervous structures in the muscular layer of the porcine descending colon using an immunofluorescence method. The obtained results show that inflammation causes an increase in the percentage of nitric oxide synthase (nNOS)-positive neurons in the myenteric plexus of the ENS, as well as the number of nitrergic nerve fibers in the muscular layer of the descending colon. The obtained results suggest that NO is involved in the pathological condition of the large bowel and probably takes part in neuroprotective and/or adaptive processes.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
- Correspondence: (L.R.); (J.W.)
| | - Ignacy Gonkowski
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Waldemar Grzegorzewski
- Interdisciplinary Center for Preclinical and Clinical Research, Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 str., 35-310 Rzeszow, Poland;
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Correspondence: (L.R.); (J.W.)
| |
Collapse
|