1
|
Wei SM, Huang YM. Effect of sulforaphane on testicular ischemia-reperfusion injury induced by testicular torsion-detorsion in rats. Sci Rep 2024; 14:23420. [PMID: 39379457 PMCID: PMC11461801 DOI: 10.1038/s41598-024-74756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular ischemia-reperfusion induces enhanced concentration of reactive oxygen species. The increased reactive oxygen species harm cellular lipids, nucleic acids, proteins, and carbohydrates, and ultimately cause testicular injury. Sulforaphane, a kind of natural dietary isothiocyanate, exists predominantly in some cruciferous vegetables, like broccoli and cabbage. It can protect tissues from oxidative stress-induced damage. Herein, we analyzed the effectiveness of sulforaphane in treating ischemia-reperfusion injury occurring after testicular torsion-detorsion. Male rats (n = 60) were grouped as follows: sham-operated group, unilateral testicular ischemia-reperfusion group, and unilateral testicular ischemia-reperfusion group receiving sulforaphane treatment at 5 mg/kg. No testicular torsion-detorsion was performed in the sham group. Unilateral testicular ischemia-reperfusion model was created by detorsion after 2 h of left testicular torsion. In the sulforaphane-treated group, intraperitoneal sulforaphane (5 mg/kg) was administered at left testicular detorsion. Biochemical assay, Western blot, and hematoxylin and eosin staining were used to evaluate testicular malondialdehyde content (an important marker of reactive oxygen species), protein levels of superoxide dismutase and catalase (intracellular antioxidant defense mechanism), and testicular reproductive function, respectively. In testicular tissues, malondialdehyde content was significantly promoted, while protein levels of superoxide dismutase and catalase, and testicular reproductive function were significantly reduced in ipsilateral testes by testicular ischemia-reperfusion. Nevertheless, sulforaphane administration partially reversed the effect of testicular ischemia-reperfusion on these indexes. It can be concluded that sulforaphane elevates protein levels of superoxide dismutase and catalase, and suppresses reactive oxygen species content, thereby preventing ischemia-reperfusion injury in testis.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, 310015, Zhejiang Province, China.
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, 310053, Zhejiang Province, China.
| | - Yu-Min Huang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou City, 310058, Zhejiang Province, China
| |
Collapse
|
2
|
Wakasugi-Onogi S, Ma S, Ruhee RT, Tong Y, Seki Y, Suzuki K. Sulforaphane Attenuates Neutrophil ROS Production, MPO Degranulation and Phagocytosis, but Does Not Affect NET Formation Ex Vivo and In Vitro. Int J Mol Sci 2023; 24:ijms24108479. [PMID: 37239829 DOI: 10.3390/ijms24108479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Sulforaphane has several effects on the human body, including anti-inflammation, antioxidation, antimicrobial and anti-obesity effects. In this study, we examined the effect of sulforaphane on several neutrophil functions: reactive oxygen species (ROS) production, degranulation, phagocytosis, and neutrophil extracellular trap (NET) formation. We also examined the direct antioxidant effect of sulforaphane. First, we measured neutrophil ROS production induced by zymosan in whole blood in the presence of 0 to 560 µM sulforaphane. Second, we examined the direct antioxidant activity of sulforaphane using a HOCl removal test. In addition, inflammation-related proteins, including an azurophilic granule component, were measured by collecting supernatants following ROS measurements. Finally, neutrophils were isolated from blood, and phagocytosis and NET formation were measured. Sulforaphane reduced neutrophil ROS production in a concentration-dependent manner. The ability of sulforaphane to remove HOCl is stronger than that of ascorbic acid. Sulforaphane at 280 µM significantly reduced the release of myeloperoxidase from azurophilic granules, as well as that of the inflammatory cytokines TNF-α and IL-6. Sulforaphane also suppressed phagocytosis but did not affect NET formation. These results suggest that sulforaphane attenuates neutrophil ROS production, degranulation, and phagocytosis, but does not affect NET formation. Moreover, sulforaphane directly removes ROS, including HOCl.
Collapse
Affiliation(s)
| | - Sihui Ma
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ruheea Taskin Ruhee
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yasuhiro Seki
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
3
|
Honda M, Kadohisa M, Yoshii D, Komohara Y, Hibi T. Intravital imaging of immune responses in intestinal inflammation. Inflamm Regen 2023; 43:9. [PMID: 36737792 PMCID: PMC9896837 DOI: 10.1186/s41232-023-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
To date, many kinds of immune cells have been identified, but their precise roles in intestinal immunity remain unclear. Understanding the in vivo behavior of these immune cells and their function in gastrointestinal inflammation, including colitis, inflammatory bowel disease, ischemia-reperfusion injury, and neutrophil extracellular traps, is critical for gastrointestinal research to proceed to the next step. Additionally, understanding the immune responses involved in gastrointestinal tumors and tissue repair is becoming increasingly important for the elucidation of disease mechanisms that have been unknown. In recent years, the application of intravital microscopy in gastrointestinal research has provided novel insights into the mechanisms of intestine-specific events including innate and adaptive immunities. In this review, we focus on the emerging role of intravital imaging in gastrointestinal research and describe how to observe the intestines and immune cells using intravital microscopy. Additionally, we outline novel findings obtained by this new technique.
Collapse
Affiliation(s)
- Masaki Honda
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| | - Masashi Kadohisa
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| | - Daiki Yoshii
- grid.411152.20000 0004 0407 1295Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Komohara
- grid.274841.c0000 0001 0660 6749Department of Cell Pathology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Taizo Hibi
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| |
Collapse
|
4
|
Wang F, Gu L, Wang Y, Sun D, Zhao Y, Meng Q, Yin L, Xu L, Lu X, Peng J, Lin Y, Sun P. MicroRNA-122a aggravates intestinal ischemia/reperfusion injury by promoting pyroptosis via targeting EGFR-NLRP3 signaling pathway. Life Sci 2022; 307:120863. [DOI: 10.1016/j.lfs.2022.120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
5
|
New Frontiers in Organ Preservation and Hepatoprotection. Int J Mol Sci 2022; 23:ijms23084379. [PMID: 35457205 PMCID: PMC9027363 DOI: 10.3390/ijms23084379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
|
6
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Ismaeel A, Greathouse KL, Newton N, Miserlis D, Papoutsi E, Smith RS, Eidson JL, Dawson DL, Milner CW, Widmer RJ, Bohannon WT, Koutakis P. Phytochemicals as Therapeutic Interventions in Peripheral Artery Disease. Nutrients 2021; 13:2143. [PMID: 34206667 PMCID: PMC8308302 DOI: 10.3390/nu13072143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) affects over 200 million people worldwide, resulting in significant morbidity and mortality, yet treatment options remain limited. Among the manifestations of PAD is a severe functional disability and decline, which is thought to be the result of different pathophysiological mechanisms including oxidative stress, skeletal muscle pathology, and reduced nitric oxide bioavailability. Thus, compounds that target these mechanisms may have a therapeutic effect on walking performance in PAD patients. Phytochemicals produced by plants have been widely studied for their potential health effects and role in various diseases including cardiovascular disease and cancer. In this review, we focus on PAD and discuss the evidence related to the clinical utility of different phytochemicals. We discuss phytochemical research in preclinical models of PAD, and we highlight the results of the available clinical trials that have assessed the effects of these compounds on PAD patient functional outcomes.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - K. Leigh Greathouse
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
- Department of Human Sciences and Design, Baylor University, Waco, TX 76798, USA
| | - Nathan Newton
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA;
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - Robert S. Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Jack L. Eidson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - David L. Dawson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Craig W. Milner
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Robert J. Widmer
- Heart & Vascular Department, Baylor Scott & White Medical Center, Temple, TX 76508, USA;
| | - William T. Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| |
Collapse
|