1
|
Weng Y, Yuan X, Fan S, Duan W, Tan Y, Zhou R, Wu J, Shen Y, Zhang Z, Xu H. 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair. ACS OMEGA 2024; 9:26097-26111. [PMID: 38911726 PMCID: PMC11190930 DOI: 10.1021/acsomega.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold's physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold's significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold's exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
Collapse
Affiliation(s)
- Yiping Weng
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Xiuchen Yuan
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Shijie Fan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Weihao Duan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yadong Tan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Ruikai Zhou
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Jingbin Wu
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yifei Shen
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Zhonghua Zhang
- Changzhou
Economic Development District Hengshanqiao People’s Hospital, Changzhou 213003, China
| | - Hua Xu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Bott KN, Feldman E, de Souza RJ, Comelli EM, Klentrou P, Peters SJ, Ward WE. Lipopolysaccharide-Induced Bone Loss in Rodent Models: A Systematic Review and Meta-Analysis. J Bone Miner Res 2023; 38:198-213. [PMID: 36401814 PMCID: PMC10107812 DOI: 10.1002/jbmr.4740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis has traditionally been characterized by underlying endocrine mechanisms, though evidence indicates a role of inflammation in its pathophysiology. Lipopolysaccharide (LPS), a component of gram-negative bacteria that reside in the intestines, can be released into circulation and stimulate the immune system, upregulating bone resorption. Exogenous LPS is used in rodent models to study the effect of systemic inflammation on bone, and to date a variety of different doses, routes, and durations of LPS administration have been used. The study objective was to determine whether systemic administration of LPS induced inflammatory bone loss in rodent models. A systematic search of Medline and four other databases resulted in a total of 110 studies that met the inclusion criteria. Pooled standardized mean differences (SMDs) and corresponding 95% confidence intervals (CI) with a random-effects meta-analyses were used for bone volume fraction (BV/TV) and volumetric bone mineral density (vBMD). Heterogeneity was quantified using the I2 statistic. Shorter-term (<2 weeks) and longer-term (>2 weeks) LPS interventions were analyzed separately because of intractable study design differences. BV/TV was significantly reduced in both shorter-term (SMD = -3.79%, 95% CI [-4.20, -3.38], I2 62%; p < 0.01) and longer-term (SMD = -1.50%, 95% CI [-2.00, -1.00], I2 78%; p < 0.01) studies. vBMD was also reduced in both shorter-term (SMD = -3.11%, 95% CI [-3.78, -2.44]; I2 72%; p < 0.01) and longer-term (SMD = -3.49%, 95% CI [-4.94, -2.04], I2 82%; p < 0.01) studies. In both groups, regardless of duration, LPS negatively impacted trabecular bone structure but not cortical bone structure, and an upregulation in bone resorption demonstrated by bone cell staining and serum biomarkers was reported. This suggests systemically delivered exogenous LPS in rodents is a viable model for studying inflammatory bone loss, particularly in trabecular bone. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Evelyn Feldman
- Lakehead University Library, Lakehead University, Thunder Bay, ON, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Reversing the imbalance in bone homeostasis via sustained release of SIRT-1 agonist to promote bone healing under osteoporotic condition. Bioact Mater 2023; 19:429-443. [PMID: 35574058 PMCID: PMC9079176 DOI: 10.1016/j.bioactmat.2022.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
The imbalance of bone homeostasis is the root cause of osteoporosis. However current therapeutic approaches mainly focus on either anabolic or catabolic pathways, which often fail to turn the imbalanced bone metabolism around. Herein we reported that a SIRT-1 agonist mediated molecular therapeutic strategy to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis via locally sustained release of SRT2104 from mineral coated acellular matrix microparticles. Immobilization of SRT2104 on mineral coating (MAM/SRT) harnessing their electrostatic interactions resulted in sustained release of SIRT-1 agonist for over 30 days. MAM/SRT not only enhanced osteogenic differentiation and mineralization, but also attenuated the formation and function of excessive osteoclasts via integrating multiple vital upstream signals (β-catenin, FoxOs, Runx2, NFATc1, etc.) in vitro. Osteoporosis animal model also validated that it accelerated osteoporotic bone healing and improved osseointegration of the surrounding bone. Overall, our work proposes a promising strategy to treat osteoporotic bone defects by reversing the imbalance in bone homeostasis using designated small molecule drug delivery systems. A mineral coated acellular matrix microcarriers sustainably release SIRT2104 more than 30 days. This drug delivery system regulates osteogenesis and osteoclastogenesis. It can accelerate osteoporotic bone healing by reversing the imbalance in bone homeostasis.
Collapse
|
4
|
Hou W, Chen M, Ye C, Chen E, Li W, Zhang W. Parkin Inhibits RANKL-Induced Osteoclastogenesis and Ovariectomy-Induced Bone Loss. Biomolecules 2022; 12:1602. [PMID: 36358952 PMCID: PMC9687699 DOI: 10.3390/biom12111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 07/27/2023] Open
Abstract
Osteoporosis and osteoporotic fractures comprise a substantial health and socioeconomic burden. The leading cause of osteoporosis is an imbalance in bone formation and bone resorption caused by hyperactive osteoclasts. Therefore, a new strategy to suppress osteoclastogenesis is needed. Parkin is likely closely associated with bone metabolism, although its role in osteoclastogenesis is unclear. In this study, the Parkin protein inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation, osteoclast-specific gene expression, F-actin ring formation, and bone resorption pit formation in vitro. Moreover, depletion of Parkin enhanced RANKL-induced osteoclast formation, osteoclast-specific gene expression, F-actin ring formation, and bone resorption pit formation. Reactive oxygen species (ROS) activity was suppressed, while autophagy was upregulated with the presence of the Parkin protein. ROS activity was upregulated and autophagy was decreased due to Parkin knockdown. In addition, intravenous administration of Parkin rescued ovariectomy-induced bone loss and reduced osteoclastogenesis in vivo. Collectively, Parkin has therapeutic potential for diseases associated with overactive osteoclasts.
Collapse
Affiliation(s)
- Weiduo Hou
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Chenyi Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Weixu Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
5
|
Ma M, Fan AY, Liu Z, Yang LQ, Huang JM, Pang ZY, Yin F. Baohuoside I Inhibits Osteoclastogenesis and Protects Against Ovariectomy-Induced Bone Loss. Front Pharmacol 2022; 13:874952. [PMID: 35571086 PMCID: PMC9092047 DOI: 10.3389/fphar.2022.874952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Bone-resorbing osteoclasts are essential for skeletal remodelling, and the hyperactive formation and function of osteoclasts are common in bone metabolic diseases, especially postmenopausal osteoporosis. Therefore, regulating the osteoclast differentiation is a major therapeutic target in osteoporosis treatment. Icariin has shown potential osteoprotective effects. However, existing studies have reported limited bioavailability of icariin, and the material basis of icariin for anti-osteoporosis is attributed to its metabolites in the body. Here, we compared the effects of icariin and its metabolites (icariside I, baohuoside I, and icaritin) on osteoclastogenesis by high-content screening followed by TRAP staining and identified baohuoside I (BS) with an optimal effect. Then, we evaluated the effects of BS on osteoclast differentiation and bone resorptive activity in both in vivo and in vitro experiments. In an in vitro study, BS inhibited osteoclast formation and bone resorption function in a dose-dependent manner, and the elevated osteoclastic-related genes induced by RANKL, such as NFATc1, cathepsin K, RANK, and TRAP, were also attenuated following BS treatment. In an in vivo study, OVX-induced bone loss could be prevented by BS through interrupting the osteoclast formation and activity in mice. Furthermore, mechanistic investigation demonstrated that BS inhibited osteoclast differentiation by ameliorating the activation of the MAPK and NF-kB pathways and reducing the expression of uPAR. Our study demonstrated that baohuoside I could inhibit osteoclast differentiation and protect bone loss following ovariectomy.
Collapse
Affiliation(s)
- Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ao-Yuan Fan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zheng Liu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Qing Yang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun-Ming Huang
- Department of Orthopaedic, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Ying Pang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Shanghai Clinical Research Centre for Ageing and Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang P, Ye J, Dai J, Wang Y, Chen G, Hu J, Hu Q, Fei J. Gallic acid inhibits osteoclastogenesis and prevents ovariectomy-induced bone loss. Front Endocrinol (Lausanne) 2022; 13:963237. [PMID: 36601012 PMCID: PMC9807166 DOI: 10.3389/fendo.2022.963237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis is a common metabolic bone disease with a rapidly increasing prevalence, characterized by massive bone loss because of excessive osteoclast formation. Gallic acid (GA), a phenolic acid isolated from Cornus officinalis, has anti-inflammatory and anti-oxidant effects, but its effect on osteoclast formation has not been confirmed. In our study, we demonstrated that GA significantly inhibited RANKL-induced osteoclast formation and function of osteoclast in bone marrow monocytes (BMMs) and RAW264.7 cells in a dose-dependent manner without cytotoxicity. For molecular mechanisms, GA repressed osteoclastogenesis by blocking Akt, ERK, and JNK pathways, and suppressed osteoclastogenesis-related marker expression, including nuclear factor of the activated T-cell cytoplasmic 1 (NFATc1), c-Fos, and cathepsin K (CTSK). In addition, we further assessed the effect of GA in an ovariectomized mouse model, which indicated that GA has a notable effect on preventing bone loss. In conclusion, GA exerts notable effects in inhibiting osteoclastogenesis and preventing ovariectomy-induced bone loss, suggesting that GA is a potential agent in osteoporosis treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jiekai Ye
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jiale Dai
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Genjun Chen
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jinping Hu
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Qimiao Hu
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qimiao Hu, ; Jun Fei,
| | - Jun Fei
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
- *Correspondence: Qimiao Hu, ; Jun Fei,
| |
Collapse
|
7
|
Wang J, Jiao D, Huang X, Bai Y. Osteoclastic effects of mBMMSCs under compressive pressure during orthodontic tooth movement. Stem Cell Res Ther 2021; 12:148. [PMID: 33632323 PMCID: PMC7905894 DOI: 10.1186/s13287-021-02220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background During orthodontic tooth movement (OTM), alveolar bone remodelling is closely related to mechanical force. It is unclear whether stem cells can affect osteoclastogenesis to promote OTM. This study aimed to investigate the role of mouse bone marrow mesenchymal stem cells (mBMMSCs) under compression load in OTM. Methods A mouse OTM model was established, and GFP-labelled mBMMSCs and normal saline were injected into different groups of mice by tail vein injection. OTM distance was measured using tissue specimens and micro-computed tomography (micro-CT). The locations of mBMMSCs were traced using GFP immunohistochemistry. Haematoxylin-eosin staining, tartrate-resistant acid phosphate (TRAP) staining and immunohistochemistry of Runx2 and lipoprotein lipase were used to assess changes in the periodontal ligament during OTM. mBMMSCs under compression were co-cultured with mouse bone marrow-derived macrophages (mBMMs), and the gene expression levels of Rankl, Mmp-9, TRAP, Ctsk, Alp, Runx2, Ocn and Osterix were determined by RT-PCR. Results Ten days after mBMMSCs were injected into the tail vein of mice, the OTM distance increased from 176 (normal saline) to 298.4 μm, as determined by tissue specimen observation, and 174.2 to 302.6 μm, as determined by micro-CT metrological analysis. GFP-labelled mBMMSCs were mostly located on the compressed side of the periodontal ligament. Compared to the saline group, the number of osteoclasts in the alveolar bone increased significantly (P < 0.01) on the compressed side in the mBMMSC group. Three days after mBMMSC injection, the number of Runx2-GFP double-positive cells on the tension side was significantly higher than that on the compression side. After applying compressive force on the mBMMSCs in vitro for 2 days, RANKL expression was significantly higher than in the non-compression cells, but expression of Alp, Runx2, Ocn and Osterix was significantly decreased (P < 0.05). The numbers of osteoclasts differentiated in response to mBMMs co-cultured with mBMMSCs under pressure load and expression of osteoclast differentiation marker genes (Mmp-9, TRAP and Ctsk) were significantly higher than those in mBMMs stimulated by M-CSF alone (P < 0.05). Conclusions mBMMSCs are not only recruited to the compressed side of the periodontal ligament but can also promote osteoclastogenesis by expressing Rankl, improving the efficiency of OTM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Delong Jiao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|