1
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
2
|
Zhou N, Yan J, Xiong M, Zhu S. Decoding the heterogeneous subpopulations of glioblastoma for prognostic stratification and uncovering the promalignant role of PSMC2. Sci Rep 2025; 15:5714. [PMID: 39962070 PMCID: PMC11832913 DOI: 10.1038/s41598-024-83571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma (GBM), a highly heterogeneous and aggressive brain tumor, presents significant clinical challenges due to its frequent recurrence and poor prognosis. In this study, we employed high-dimensional weighted gene co-expression network analysis (hd-WGCNA) and single-cell transcriptomic analysis to investigate the molecular heterogeneity of GBM. We identified functional gene modules associated with tumor cell subpopulations exhibiting highly malignant traits, particularly linked to proteasome dysregulation. Intercellular communication analysis revealed extensive interactions between malignant tumor subpopulations and tumor microenvironment (TME), highlighting critical crosstalk with tumor-associated macrophages (TAMs) and T cells. Using machine learning, we developed risk scores based on these malignant gene modules, which effectively stratify GBM patients by prognosis and treatment response, particularly in relation to immunotherapy. Furthermore, we systematically evaluated pathway enrichment, genomic variations, and drug response differences across risk groups. Finally, we validated the oncogenic role of PSMC2, a key gene in the proteasome complex, demonstrating its role in promoting GBM progression through cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). Our findings provide novel insights into GBM heterogeneity, prognosis, and therapeutic strategies, suggesting PSMC2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Nini Zhou
- School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Jingsong Yan
- Department of System Biology, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China
| | - Manya Xiong
- School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400716, China.
| |
Collapse
|
3
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024; 50:1113-1133. [PMID: 38655699 PMCID: PMC11627473 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Lara Paulini
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | | | - Thorsten Mosler
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences, Goethe UniversityFrankfurt am MainGermany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and PharmacyJulius‐Maximilians‐UniversitätWürzburgGermany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Donat Kögel
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner Site FrankfurtFrankfurt am MainGermany
- German Cancer Research Center DKFZHeidelbergGermany
| |
Collapse
|
4
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
5
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
6
|
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M, Panciani PP. Glioma Stem Cells as Promoter of Glioma Progression: A Systematic Review of Molecular Pathways and Targeted Therapies. Int J Mol Sci 2024; 25:7979. [PMID: 39063221 PMCID: PMC11276876 DOI: 10.3390/ijms25147979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas' aggressive nature and resistance to therapy make them a major problem in oncology. Gliomas continue to have dismal prognoses despite significant advancements in medical science, and traditional treatments like surgery, radiation (RT), and chemotherapy (CT) frequently prove to be ineffective. After glioma stem cells (GSCs) were discovered, the traditional view of gliomas as homogeneous masses changed. GSCs are essential for tumor growth, treatment resistance, and recurrence. These cells' distinct capacities for differentiation and self-renewal are changing our knowledge of the biology of gliomas. This systematic literature review aims to uncover the molecular mechanisms driving glioma progression associated with GSCs. The systematic review adhered to PRISMA guidelines, with a thorough literature search conducted on PubMed, Ovid MED-LINE, and Ovid EMBASE. The first literature search was performed on 1 March 2024, and the search was updated on 15 May 2024. Employing MeSH terms and Boolean operators, the search focused on molecular mechanisms associated with GCSs-mediated glioma progression. Inclusion criteria encompassed English language studies, preclinical studies, and clinical trials. A number of 957 papers were initially identified, of which 65 studies spanning from 2005 to 2024 were finally included in the review. The main GSC model distribution is arranged in decreasing order of frequency: U87: 20 studies (32.0%); U251: 13 studies (20.0%); A172: 4 studies (6.2%); and T98G: 2 studies (3.17%). From most to least frequent, the distribution of the primary GSC pathway is as follows: Notch: 8 studies (12.3%); STAT3: 6 studies (9.2%); Wnt/β-catenin: 6 studies (9.2%); HIF: 5 studies (7.7%); and PI3K/AKT: 4 studies (6.2%). The distribution of molecular effects, from most to least common, is as follows: inhibition of differentiation: 22 studies (33.8%); increased proliferation: 18 studies (27.7%); enhanced invasive ability: 15 studies (23.1%); increased self-renewal: 5 studies (7.7%); and inhibition of apoptosis: 3 studies (4.6%). This work highlights GSC heterogeneity and the dynamic interplay within the glioblastoma microenvironment, underscoring the need for a tailored approach. A few key pathways influencing GSC behavior are JAK/STAT3, PI3K/AKT, Wnt/β-catenin, and Notch. Therapy may target these pathways. This research urges more study to fill in knowledge gaps in the biology of GSCs and translate findings into useful treatment approaches that could improve GBM patient outcomes.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.); (P.P.P.)
| | - Sara Antonietti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.); (P.P.P.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.); (P.P.P.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.); (P.P.P.)
| |
Collapse
|
7
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
8
|
Abdoli Shadbad M, Nejadi Orang F, Baradaran B. CD133 significance in glioblastoma development: in silico and in vitro study. Eur J Med Res 2024; 29:154. [PMID: 38448914 PMCID: PMC10918901 DOI: 10.1186/s40001-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Glioblastoma multiform (GBM) is among the commonly diagnosed brain malignancies with poor prognosis. CD133 has been introduced as an oncogene in various cancers, like GBM. This study aimed to investigate the significance of CD133 in GBM development using in silico and in vitro techniques. METHOD The TCGA-GBM database was analyzed for the correlational and comparative studies. After selecting the U87MG cell line, CD133-siRNA was transfected into U87MG cells and treated with temozolomide. The cell viability, cell cycle, migration, clonogenicity, and apoptosis of groups were investigated using MTT, flow cytometry, wound-healing, colony formation, and annexin V/PI assays. Using qRT-PCR method, the mRNA expression levels of MMP16, SOX2, RAF1, MAP2K1, MAPK3, PIK3CA, AKT3, mTOR, CDK4, and BCL2 were studied. RESULTS CD133 silencing improves apoptosis rate, arrests the cell cycle at the sub-G1 phase, suppresses the clonogenicity of U87MG cells, and inhibits the PI3K/Akt and MAPK pathways via downregulating the RAF1, MAP2K1, MAPK3, PIK3CA, AKT3, and mTOR expression. Besides, combining CD133 silencing with temozolomide treatment considerably inhibits the migration of U87MG cells compared to temozolomide monotherapy. CONCLUSION CD133 can regulate the PI3K/Akt and MAPK pathways and modulate the clonogenicity, apoptosis, and cell cycle of GBM. Combining CD133 silencing with temozolomide treatment considerably increases apoptosis, arrests the cell cycle at the sub-G1, and suppresses migration of U87MG cells compared to temozolomide monotherapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, Iran
| | - Fatemeh Nejadi Orang
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, Iran.
| |
Collapse
|
9
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
10
|
Zeng J, Zeng XX. Systems Medicine for Precise Targeting of Glioblastoma. Mol Biotechnol 2023; 65:1565-1584. [PMID: 36859639 PMCID: PMC9977103 DOI: 10.1007/s12033-023-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesenchymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept might show potential to achieve optimum effects.
Collapse
Affiliation(s)
- Jie Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou, 213022 Jiangsu People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan, 528000 Guangdong People’s Republic of China
| |
Collapse
|
11
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
12
|
Murai T, Matsuda S. Fatty Acid Metabolites and the Tumor Microenvironment as Potent Regulators of Cancer Stem Cell Signaling. Metabolites 2023; 13:709. [PMID: 37367867 DOI: 10.3390/metabo13060709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Individual cancer cells are not equal but are organized into a cellular hierarchy in which only a rare few leukemia cells can self-renew in a manner reminiscent of the characteristic stem cell properties. The PI3K/AKT pathway functions in a variety of cancers and plays a critical role in the survival and proliferation of healthy cells under physiologic conditions. In addition, cancer stem cells might exhibit a variety of metabolic reprogramming phenotypes that cannot be completely attributed to the intrinsic heterogeneity of cancer. Given the heterogeneity of cancer stem cells, new strategies with single-cell resolution will become a powerful tool to eradicate the aggressive cell population harboring cancer stem cell phenotypes. Here, this article will provide an overview of the most important signaling pathways of cancer stem cells regarding their relevance to the tumor microenvironment and fatty acid metabolism, suggesting valuable strategies among cancer immunotherapies to inhibit the recurrence of tumors.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
13
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
14
|
Voxtalisib and Low Intensity Pulsed Ultrasound Combinatorial Effect On Glioblastoma Multiforme Cancer Stem Cells Via PI3K/AKT/mTOR. Pathol Res Pract 2022; 239:154145. [DOI: 10.1016/j.prp.2022.154145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
|
15
|
MEOX2 Regulates the Growth and Survival of Glioblastoma Stem Cells by Modulating Genes of the Glycolytic Pathway and Response to Hypoxia. Cancers (Basel) 2022; 14:cancers14092304. [PMID: 35565433 PMCID: PMC9099809 DOI: 10.3390/cancers14092304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma is the most common incurable primary brain tumor in adults, typically leading to death within 15 months of diagnosis. Although there is an ongoing debate in the scientific community about the precise cellular origin of this tumor, glioblastoma stem cells (GSCs), which are able to self-renew, yield a full tumor mass, and determine chemo- and radio-resistance, are recognized to have a pivotal role. Our research aims to understand the role of the mesenchyme homeobox 2 (MEOX2) transcription factor in GSCs where it is strongly and specifically expressed. We have found that MEOX2 is indeed important for the survival of these cells. In fact, when we reduce its expression in two different GSC lines, they undergo a massive death accompanied by the inhibition of key genes of the glycolytic metabolism, the main source of energy for these cells. Our results reveal a novel function for MEOX2 in glioblastoma and suggest a mechanism through which GSCs may survive even in unfavorable conditions. Abstract The most widely accepted hypothesis for the development of glioblastoma suggests that glioblastoma stem-like cells (GSCs) are crucially involved in tumor initiation and recurrence as well as in the occurrence of chemo- and radio-resistance. Mesenchyme homeobox 2 (MEOX2) is a transcription factor overexpressed in glioblastoma, whose expression is negatively correlated with patient survival. Starting from our observation that MEOX2 expression is strongly enhanced in six GSC lines, we performed shRNA-mediated knock-down experiments in two different GSC lines and found that MEOX2 depletion resulted in the inhibition of cell growth and sphere-forming ability and an increase in apoptotic cell death. By a deep transcriptome analysis, we identified a core group of genes modulated in response to MEOX2 knock-down. Among these genes, the repressed ones are largely enriched in genes involved in the hypoxic response and glycolytic pathway, two strictly related pathways that contribute to the resistance of high-grade gliomas to therapies. An in silico study of the regulatory regions of genes differentially expressed by MEOX2 knock-down revealed that they mainly consisted of GC-rich regions enriched for Sp1 and Klf4 binding motifs, two main regulators of metabolism in glioblastoma. Our results show, for the first time, the involvement of MEOX2 in the regulation of genes of GSC metabolism, which is essential for the survival and growth of these cells.
Collapse
|
16
|
Intercellular Communication in the Brain through Tunneling Nanotubes. Cancers (Basel) 2022; 14:cancers14051207. [PMID: 35267518 PMCID: PMC8909287 DOI: 10.3390/cancers14051207] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are a means of cell communication which have been recently discovered. They allow the intercellular trafficking of many types of cellular compounds ranging from ions, such as Ca2+, to whole organelles such as mitochondria. TNTs are found in many tissues, both in physiological and pathological conditions. They are also found in the brain where they contribute to brain development and function and also to degenerative diseases and glioma. Abstract Intercellular communication is essential for tissue homeostasis and function. Understanding how cells interact with each other is paramount, as crosstalk between cells is often dysregulated in diseases and can contribute to their progression. Cells communicate with each other through several modalities, including paracrine secretion and specialized structures ensuring physical contact between them. Among these intercellular specialized structures, tunneling nanotubes (TNTs) are now recognized as a means of cell-to-cell communication through the exchange of cellular cargo, controlled by a variety of biological triggers, as described here. Intercellular communication is fundamental to brain function. It allows the dialogue between the many cells, including neurons, astrocytes, oligodendrocytes, glial cells, microglia, necessary for the proper development and function of the brain. We highlight here the role of TNTs in connecting these cells, for the physiological functioning of the brain and in pathologies such as stroke, neurodegenerative diseases, and gliomas. Understanding these processes could pave the way for future therapies.
Collapse
|
17
|
Du Z, Wang Y, Liang J, Gao S, Cai X, Yu Y, Qi Z, Li J, Xie Y, Wang Z. Association of glioma CD44 expression with glial dynamics in the tumour microenvironment and patient prognosis. Comput Struct Biotechnol J 2022; 20:5203-5217. [PMID: 36187921 PMCID: PMC9508470 DOI: 10.1016/j.csbj.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
Because of the heterogeneity of lower-grade gliomas (LGGs), patients show various survival outcomes that are not reliably predicted by histological classification. The tumour microenvironment (TME) contributes to the initiation and progression of brain LGGs. Identifying potential prognostic markers based on the immune and stromal components in the TME will provide new insights into the dynamic modulation of these two components of the TME in LGGs. We applied ESTIMATE to calculate the ratio of immune and stromal components from The Cancer Genome Atlas database. After combined differential gene expression analysis, protein–protein interaction network construction and survival analysis, CD44 was screened as an independent prognostic factor and subsequently validated utilizing data from the Chinese Glioma Genome Atlas database. To decipher the association of glioma cell CD44 expression with stromal cells in the TME and tumour progression, RT–qPCR, cell viability and wound healing assays were employed to determine whether astrocytes enhance glioma cell viability and migration by upregulating CD44 expression. Surprisingly, M1 macrophages were identified as positively correlated with CD44 expression by CIBERSORT analysis. CD44+ glioma cells were further suggested to interact with microglia-derived macrophages (M1 phenotype) via osteopontin signalling on the basis of single-cell sequencing data. Overall, we found that astrocytes could elevate the CD44 expression level of glioma cells, enhancing the recruitment of M1 macrophages that may promote glioma stemness via osteopontin-CD44 signalling. Thus, glioma CD44 expression might coordinate with glial activities in the TME and serve as a potential therapeutic target and prognostic marker for LGGs.
Collapse
|
18
|
Stevanovic M, Kovacevic-Grujicic N, Mojsin M, Milivojevic M, Drakulic D. SOX transcription factors and glioma stem cells: Choosing between stemness and differentiation. World J Stem Cells 2021; 13:1417-1445. [PMID: 34786152 PMCID: PMC8567447 DOI: 10.4252/wjsc.v13.i10.1417] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common, most aggressive and deadliest brain tumor. Recently, remarkable progress has been made towards understanding the cellular and molecular biology of gliomas. GBM tumor initiation, progression and relapse as well as resistance to treatments are associated with glioma stem cells (GSCs). GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types, generating a range of distinct cell types within the tumor, leading to cellular heterogeneity. GBM tumors may contain different subsets of GSCs, and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy. GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties, making them more malignant, able to rapidly spread. The impact of SOX transcription factors (TFs) on brain tumors has been extensively studied in the last decade. Almost all SOX genes are expressed in GBM, and their expression levels are associated with patient prognosis and survival. Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation. The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation. Therefore, innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM. Combatting GBM has been a demanding and challenging goal for decades. The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival. Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
- Chair Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade 11158, Serbia
- Department of Chemical and Biological Sciences, Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia.
| | - Natasa Kovacevic-Grujicic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade 11042, Serbia
| |
Collapse
|
19
|
Burster T, Traut R, Yermekkyzy Z, Mayer K, Westhoff MA, Bischof J, Knippschild U. Critical View of Novel Treatment Strategies for Glioblastoma: Failure and Success of Resistance Mechanisms by Glioblastoma Cells. Front Cell Dev Biol 2021; 9:695325. [PMID: 34485282 PMCID: PMC8415230 DOI: 10.3389/fcell.2021.695325] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
According to the invasive nature of glioblastoma, which is the most common form of malignant brain tumor, the standard care by surgery, chemo- and radiotherapy is particularly challenging. The presence of glioblastoma stem cells (GSCs) and the surrounding tumor microenvironment protects glioblastoma from recognition by the immune system. Conventional therapy concepts have failed to completely remove glioblastoma cells, which is one major drawback in clinical management of the disease. The use of small molecule inhibitors, immunomodulators, immunotherapy, including peptide and mRNA vaccines, and virotherapy came into focus for the treatment of glioblastoma. Although novel strategies underline the benefit for anti-tumor effectiveness, serious challenges need to be overcome to successfully manage tumorigenesis, indicating the significance of developing new strategies. Therefore, we provide insights into the application of different medications in combination to boost the host immune system to interfere with immune evasion of glioblastoma cells which are promising prerequisites for therapeutic approaches to treat glioblastoma patients.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rebecca Traut
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Zhanerke Yermekkyzy
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Katja Mayer
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
20
|
Juric V, Düssmann H, Lamfers MLM, Prehn JHM, Rehm M, Murphy BM. Transcriptional CDK Inhibitors CYC065 and THZ1 Induce Apoptosis in Glioma Stem Cells Derived from Recurrent GBM. Cells 2021; 10:1182. [PMID: 34066147 PMCID: PMC8151379 DOI: 10.3390/cells10051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment resistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin-dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients. Targeting GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. TCGA-GBM data analysis has shown that the GSC markers, CD133 and CD44 were significantly upregulated in GBM patient tumours compared to non-tumour tissue. CD133 and CD44 stem cell markers were also expressed in gliomaspheres derived from recurrent GBM tumours. Light Sheet Florescence Microscopy (LSFM) further revealed heterogeneous expression of these GSC markers in gliomaspheres. Gliomaspheres from recurrent tumours were highly sensitive to transcriptional CDK inhibitors, CYC065 and THZ1 and underwent apoptosis while being resistant to TMZ. Apoptotic cell death in GSC subpopulations and non-stem tumour cells resulted in sphere disruption. Collectively, our study highlights the potential of these novel CKIs to induce cell death in GSCs from recurrent tumours, warranting further clinical investigation.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland; (V.J.); (H.D.); (J.H.M.P.)
| | - Heiko Düssmann
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland; (V.J.); (H.D.); (J.H.M.P.)
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC, 3015 CN Rotterdam, The Netherlands;
| | - Jochen H. M. Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland; (V.J.); (H.D.); (J.H.M.P.)
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany;
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Brona M. Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland; (V.J.); (H.D.); (J.H.M.P.)
| |
Collapse
|
21
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|
22
|
The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Int J Mol Sci 2021; 22:ijms22083863. [PMID: 33917954 PMCID: PMC8068366 DOI: 10.3390/ijms22083863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is known to be the most common and lethal primary malignant brain tumor. Therapies against this neoplasia have a high percentage of failure, associated with the survival of self-renewing glioblastoma stem cells (GSCs), which repopulate treated tumors. In addition, despite new radical surgery protocols and the introduction of new anticancer drugs, protocols for treatment, and technical advances in radiotherapy, no significant improvement in the survival rate for GBMs has been realized. Thus, novel antitarget therapies could be used in conjunction with standard radiochemotherapy approaches. Targeted therapy, indeed, may address specific targets that play an essential role in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Significant cellular heterogeneity and the hierarchy with GSCs showing a therapy-resistant phenotype could explain tumor recurrence and local invasiveness and, therefore, may be a target for new therapies. Therefore, the forced differentiation of GSCs may be a promising new approach in GBM treatment. This article provides an updated review of the current standard and experimental therapies for GBM, as well as an overview of the molecular characteristics of GSCs, the mechanisms that activate resistance to current treatments, and a new antitumor strategy for treating GSCs for use as therapy.
Collapse
|
23
|
Vieira de Castro J, S. Gonçalves C, P. Martins E, Miranda-Lorenzo I, T. Cerqueira M, Longatto-Filho A, A. Pinto A, L. Reis R, Sousa N, Heeschen C, M. Costa B. Intracellular Autofluorescence as a New Biomarker for Cancer Stem Cells in Glioblastoma. Cancers (Basel) 2021; 13:828. [PMID: 33669350 PMCID: PMC7920313 DOI: 10.3390/cancers13040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of cancer stem cells (CSCs), which are implicated in tumor initiation, progression, therapy resistance, and relapse, is of great biological and clinical relevance. In glioblastoma (GBM), this is still a challenge, as no single marker is able to universally identify populations of GBM cancer stem cells (GSCs). Indeed, there is still controversy on whether biomarker-expressing cells fulfill the functional criteria of bona fide GSCs, despite being widely used. Here, we describe a novel subpopulation of autofluorescent (Fluo+) cells in GBM that bear all the functional characteristics of GSCs, including higher capacity to grow as neurospheres, long-term self-renewal ability, increased expression of stem cell markers, and enhanced in vivo tumorigenicity. Mechanistically, the autofluorescent phenotype is largely due to the intracellular accumulation of riboflavin, mediated by the ABC transporter ABCG2. In summary, our work identifies an intrinsic cellular autofluorescent phenotype enriched in GBM cells with functional stem cells features that can be used as a novel, simple and reliable biomarker to target these highly malignant tumors, with implications for GBM biological and clinical research.
Collapse
Affiliation(s)
- Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Irene Miranda-Lorenzo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (I.M.-L.); (C.H.)
| | - Mariana T. Cerqueira
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, Brazil
| | - Afonso A. Pinto
- Department of Neurosurgery, Hospital de Braga, 4710-243 Braga, Portugal;
| | - Rui L. Reis
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (I.M.-L.); (C.H.)
- Center for Single-Cell Omics & State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.V.d.C.); (C.S.G.); (E.P.M.); (A.L.-F.); (N.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; (M.T.C.); (R.L.R.)
| |
Collapse
|
24
|
Fan X, Yang H, Zhao C, Hu L, Wang D, Wang R, Fang Z, Chen X. Local anesthetics impair the growth and self-renewal of glioblastoma stem cells by inhibiting ZDHHC15-mediated GP130 palmitoylation. Stem Cell Res Ther 2021; 12:107. [PMID: 33541421 PMCID: PMC7863430 DOI: 10.1186/s13287-021-02175-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. METHODS The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. RESULTS In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. CONCLUSIONS In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Haoran Yang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Delong Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Ruiting Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Zhiyou Fang
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Xueran Chen
- Department of Medical Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
25
|
Identification of a Dexamethasone Mediated Radioprotection Mechanism Reveals New Therapeutic Vulnerabilities in Glioblastoma. Cancers (Basel) 2021; 13:cancers13020361. [PMID: 33478100 PMCID: PMC7836009 DOI: 10.3390/cancers13020361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Despite the indisputable effectiveness of dexamethasone (DEXA) to reduce inflammation in glioblastoma (GBM) patients, its influence on tumour progression and radiotherapy response remains controversial. (2) Methods: We analysed patient data and used expression and cell biological analyses to assess effects of DEXA on GBM cells. We tested the efficacy of tyrosine kinase inhibitors in vitro and in vivo. (3) Results: We confirm in our patient cohort that administration of DEXA correlates with worse overall survival and shorter time to relapse. In GBM cells and glioma stem-like cells (GSCs) DEXA down-regulates genes controlling G2/M and mitotic-spindle checkpoints, and it enables cells to override the spindle assembly checkpoint (SAC). Concurrently, DEXA up-regulates Platelet Derived Growth Factor Receptor (PDGFR) signalling, which stimulates expression of anti-apoptotic regulators BCL2L1 and MCL1, required for survival during extended mitosis. Importantly, the protective potential of DEXA is dependent on intact tyrosine kinase signalling and ponatinib, sunitinib and dasatinib, all effectively overcome the radio-protective and pro-proliferative activity of DEXA. Moreover, we discovered that DEXA-induced signalling creates a therapeutic vulnerability for sunitinib in GSCs and GBM cells in vitro and in vivo. (4) Conclusions: Our results reveal a novel DEXA-induced mechanism in GBM cells and provide a rationale for revisiting the use of tyrosine kinase inhibitors for the treatment of GBM.
Collapse
|