1
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
2
|
Song Y, Guo Z, Song L, Ma JX, Ma YQ, Shang LN, Meng YP, Fan ZQ, Hao MH, Zhao J. Role of DNA damage response in cyclophosphamide-induced premature ovarian failure in mice. J Obstet Gynaecol Res 2024; 50:1655-1666. [PMID: 38936810 DOI: 10.1111/jog.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
AIM To investigate the DNA damage response (DDR) in a cyclophosphamide (CTX)-induced mouse model of premature ovarian failure (POF). METHODS The POF model was established by injecting mice with CTX. The body, ovarian weights, the estrus cycle, and pathological changes of the ovaries were recorded. The serum levels of 17 β-estradiol (E2) and follicle-stimulating hormone (FSH) were measured. The expression of Ki67, β-galactosidase (β-gal), p21, p53, γH2AX, and pATM in ovarian tissues was detected by immunohistochemistry. The expression of β-gal, γH2AX, and pATM was analyzed by immunofluorescence staining of primary cultured granulosa cells (GCs). RESULTS The body and ovarian weights decreased, the estrus cycles were erratic, and the FSH level increased, whereas the E2 level decreased in POF mice compared to controls. The pathological consequences of POF revealed an increase in atretic follicles, corpus luteum, and primordial follicles and a decrease in the number of primary, secondary, and tertiary follicles. Ki67 expression was reduced, β-gal, p21, p53, γH2AX, and pATM expression were elevated in the ovaries of POF mice. The expression of β-gal, γH2AX, and pATM increased in GCs with the concentration in a time-dependent manner. CONCLUSION In total, CTX induced POF in mice, which was mediated by the DDR pathway of ATM-P53-P21.
Collapse
Affiliation(s)
- Yi Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Medical College, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - Zhong Guo
- Medical College, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - Lei Song
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Jian-Xiu Ma
- Medical College, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| | - Yan-Qing Ma
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Li-Na Shang
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Ya-Ping Meng
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Zi-Qi Fan
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Ming-Hui Hao
- Medical College, Northwest Minzu University, Lanzhou, China
| | - Jin Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Medical College, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
3
|
Di Giacomo C, Malfa GA, Tomasello B, Bianchi S, Acquaviva R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants (Basel) 2023; 12:1445. [PMID: 37507985 PMCID: PMC10376414 DOI: 10.3390/antiox12071445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The tripeptide glutathione plays important roles in many cell processes, including differentiation, proliferation, and apoptosis; in fact, disorders in glutathione homeostasis are involved both in the etiology and in the progression of several human diseases, including cancer. Natural compounds have been found to modulate glutathione levels and function beyond their role as mere antioxidants. For example, certain compounds can upregulate the expression of glutathione-related enzymes, increase the availability of cysteine, the limiting amino acid for glutathione synthesis, or directly interact with glutathione and modulate its function. These compounds may have therapeutic potential in a variety of disease states where glutathione dysregulation is a contributing factor. On the other hand, flavonoids' potential to deplete glutathione levels could be significant for cancer treatment. Overall, while natural compounds may have potential therapeutic and/or preventive properties and may be able to increase glutathione levels, more research is needed to fully understand their mechanisms of action and their potential benefits for the prevention and treatment of several diseases. In this review, particular emphasis will be placed on phytochemical compounds belonging to the class of polyphenols, terpenoids, and glucosinolates that have an impact on glutathione-related processes, both in physiological and pathological conditions. These classes of secondary metabolites represent the most food-derived bioactive compounds that have been intensively explored and studied in the last few decades.
Collapse
Affiliation(s)
- Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Acquaviva R, Malfa GA, Santangelo R, Bianchi S, Pappalardo F, Taviano MF, Miceli N, Di Giacomo C, Tomasello B. Wild Artichoke (Cynara cardunculus subsp. sylvestris, Asteraceae) Leaf Extract: Phenolic Profile and Oxidative Stress Inhibitory Effects on HepG2 Cells. Molecules 2023; 28:molecules28062475. [PMID: 36985448 PMCID: PMC10054820 DOI: 10.3390/molecules28062475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Cynara cardunculus subsp. sylvestris (wild artichoke) is widespread in Sicily, where it has been used for food and medicinal purposes since ancient times; decoctions of the aerial parts of this plant have been traditionally employed as a remedy for different hepatic diseases. In this study, the phenolic profile and cell-free antioxidant properties of the leaf aqueous extract of wild artichokes grown in Sicily (Italy) were investigated. The crude extract was also tested in cells for its antioxidant characteristics and potential oxidative stress inhibitory effects. To resemble the features of the early stage of mild steatosis in humans, human HepG2 cells treated with free fatty acids at the concentration of 1.5 mM were used. HPLC-DAD analysis revealed the presence of several phenolic acids (caffeoylquinic acids) and flavonoids (luteolin and apigenin derivatives). At the same time, DPPH assay showed a promising antioxidant power (IC50 = 20.04 ± 2.52 µg/mL). Biological investigations showed the safety of the crude extract and its capacity to counteract the injury induced by FFA exposure by restoring cell viability and counteracting oxidative stress through inhibiting reactive oxygen species and lipid peroxidation and increasing thiol-group levels. In addition, the extract increased mRNA expression of some proteins implicated in the antioxidant defense (Nrf2, Gpx, and SOD1) and decreased mRNA levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β), which were modified by FFA treatment. Results suggest that the total phytocomplex contained in wild artichoke leaves effectively modulates FFA-induced hepatic oxidative stress.
Collapse
Affiliation(s)
- Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-095-7384065
| | - Rosa Santangelo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
5
|
Characterization of a Novel Myrosinase with High Activity from Marine Bacterium Shewanella baltica Myr-37. Int J Mol Sci 2022; 23:ijms231911258. [PMID: 36232557 PMCID: PMC9569522 DOI: 10.3390/ijms231911258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Myrosinase can hydrolyze glucosinolates to generate isothiocyanates, which have cancer prevention and anti-cancer properties. The main sources of myrosinase are cruciferous plants. To further improve the efficiency of isothiocyanates preparation, it is necessary to explore novel sources of myrosinases. In this study, we described a bacterium, Shewanella baltica Myr-37, isolated from marine mud, capable of producing a novel myrosinase (Smyr37) with a molecular weight of 100 kDa. The crude enzyme of Smyr37 showed the highest activity at 50 °C and pH 8.0. The sinigrin- and glucoraphanin-hydrolyzing activities of Smyr37 were 6.95 and 5.87 U/mg, respectively. Moreover, when the reaction temperature was 40 °C and pH was 7.0, the crude enzyme of Smyr37 could efficiently degrade glucoraphanin into sulforaphane within 25 min with a yield of 0.57 mg/mL. The corresponding conversion efficiency of sulforaphane from glucoraphanin was 89%. In summary, S. baltica Myr-37 myrosinase Smyr37, a novel myrosinase, can be used in the preparation of isothiocyanates.
Collapse
|
6
|
Benzo[k,l]xanthene Lignan-Loaded Solid Lipid Nanoparticles for Topical Application: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185887. [PMID: 36144620 PMCID: PMC9503089 DOI: 10.3390/molecules27185887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Skin is the first human barrier that is daily exposed to a broad spectrum of physical and chemical agents, which can increase reactive oxygen species (ROS) and lead to the formation of topical disorders. Antioxidant molecules, such as benzo[k,l]xanthene lignans (BXL), are ideal candidates to eliminate or minimize the effects of ROS. Herein, we aimed to formulate BXL-loaded solid lipid nanoparticles (SLN-BXL) to improve the bioavailability and interaction with the skin, and also to investigate the protective impact against intracellular ROS generation in HFF-1 in comparison with the drug-free situation. SLN-BXL were formulated using the PIT/ultrasonication method, and then were subjected to physicochemical characterizations, i.e., average size, zeta potential (ZP), polydispersity index (PDI), encapsulation efficiency (%EE), thermotropic behavior, and interaction with a biomembrane model. The results show a mean size around 200 nm, PDI of 0.2, and zeta potential of about -28 mV, with values almost unchanged over a period of three months, while the EE% is ≈70%. Moreover, SLN-BXL are able to deeply interact with the biomembrane model, and to achieve a double-action release in mildly hydrophobic matrices; the results of the in vitro experiments confirm that SLN-BXL are cell-safe and capable of attenuating the IL-2-induced high ROS levels. In conclusion, based on our findings, the formulation can be proposed as a candidate for a preventive remedy against skin disorders induced by increased levels of ROS.
Collapse
|
7
|
Genovese C, Garozzo A, D’Angeli F, Malfa GA, Bellia F, Tomasello B, Nicolosi D, Malaguarnera R, Ronsisvalle S, Guadagni F, Acquaviva R. Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells 2022; 11:1696. [PMID: 35626733 PMCID: PMC9139723 DOI: 10.3390/cells11101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and β-Coronavirus by the plaque reduction assay. RESULTS The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.
Collapse
Affiliation(s)
- Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography, National Research Council (CNR), 95126 Catania, Italy;
| | - Barbara Tomasello
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Daria Nicolosi
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Microbiology Section, University of Catania, 95125 Catania, Italy
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
| | - Simone Ronsisvalle
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Rosaria Acquaviva
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| |
Collapse
|
8
|
Protocatechuic Acid, a Simple Plant Secondary Metabolite, Induced Apoptosis by Promoting Oxidative Stress through HO-1 Downregulation and p21 Upregulation in Colon Cancer Cells. Biomolecules 2021; 11:biom11101485. [PMID: 34680118 PMCID: PMC8533287 DOI: 10.3390/biom11101485] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal cancers, particularly colorectal cancer, are mainly influenced by the dietary factor. A diet rich in fruits and vegetables can help to reduce the incidence of colorectal cancer thanks to the phenolic compounds, which possess antimutagenic and anticarcinogenic properties. Polyphenols, alongside their well-known antioxidant properties, also show a pro-oxidative potential, which makes it possible to sensitize tumor cells to oxidative stress. HO-1 combined with antioxidant activity, when overexpressed in cancer cells, is involved in tumor progression, and its inhibition is considered a feasible therapeutic strategy in cancer treatment. In this study, the effects of protocatechuic acid (PCA) on the viability of colon cancer cells (CaCo-2), annexin V, LDH release, reactive oxygen species levels, total thiol content, HO-1, γ-glutamylcysteine synthetase, and p21 expression were evaluated. PCA induced, in a dose-dependent manner, a significantly reduced cell viability of CaCo-2 by oxidative/antioxidant imbalance. The phenolic acid induced modifications in levels of HO-1, non-proteic thiol groups, γ-glutamylcysteine synthetase, reactive oxygen species, and p21. PCA induced a pro-oxidant effect in cancer cells, and the in vitro pro-apoptotic effect on CaCo-2 cells is mediated by the modulation of redox balance and the inhibition of the HO-1 system that led to the activation of p21. Our results suggest that PCA may represent a useful tool in prevention and/or therapy of colon cancer.
Collapse
|
9
|
Essential Oil-Loaded NLC for Potential Intranasal Administration. Pharmaceutics 2021; 13:pharmaceutics13081166. [PMID: 34452126 PMCID: PMC8399280 DOI: 10.3390/pharmaceutics13081166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Complementary and alternative medicines represent an interesting field of research on which worldwide academics are focusing many efforts. In particular, the possibility to exploit pharmaceutical technology strategies, such as the nanoencapsulation, for the delivery of essential oils is emerging as a promising strategy not only in Italy but also all over the world. The aim of this work was the development of nanostructured lipid carriers (NLC) for the delivery of essential oils (Lavandula, Mentha, and Rosmarinus) by intranasal administration, an interesting topic in which Italian contributions have recently increased. Essential oil-loaded NLC, projected as a possible add-on strategy in the treatment of neurodegenerative diseases, were characterized in comparison to control formulations prepared with Tegosoft CT and Neem oil. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<200 nm) and good stability were obtained. Morphological and physical-chemical studies showed the formation of different structures depending on the nature of the liquid oil component. In particular, NLC prepared with Lavandula or Rosmarinus showed the formation of a more ordered structure with higher cytocompatibility on two cell lines, murine and human fibroblasts. Taken together, our preliminary results show that optimized positively charged NLC containing Lavandula or Rosmarinus can be proposed as a potential add-on strategy in the treatment of neurodegenerative diseases through intranasal administration, due to the well-known beneficial effects of essential oils and the mucoadhesive properties of NLC.
Collapse
|
10
|
Malfa GA, Tomasello B, Acquaviva R, Mantia AL, Pappalardo F, Ragusa M, Renis M, Di Giacomo C. The Antioxidant Activities of Betula etnensis Rafin. Ethanolic Extract Exert Protective and Anti-diabetic Effects on Streptozotocin-Induced Diabetes in Rats. Antioxidants (Basel) 2020; 9:E847. [PMID: 32927638 PMCID: PMC7555603 DOI: 10.3390/antiox9090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Pathophysiological mechanisms correlating diabetes mellitus with associated complications are still not completely clear, even though oxidative stress seems to play a pivotal role. Literature data suggest that cell damages induced by hyperglycemia, although multifactorial, have a common pathway in oxidative/nitrosative stress. The present study evaluated the effects of Betula etnensis Raf. bark extract, a plant belonging to the Betulaceae family endemic to Sicily, on oxidative stress and in preventing and/or retarding diabetes-associated complications in streptozotocin diabetic rats treated with the extract at dose of 0.5 g/kg body weight per day for 28 consecutive days. The extract administration significant decreased food and water intake, fasting blood glucose, weight loss and polyuria, compared with untreated diabetic animals. Furthermore, oxidative stress markers particularly, lipid hydroperoxides (LOOH) and nitrite/nitrate levels, non-proteic thiol groups (RSH), γ-glutamyl-cysteine-synthetase (γ-GCS) activities and expression, heme oxygenase-1 (HO-1), endothelial and inducible nitric oxide synthases (i-NOS e-NOS) expression, significantly changed by streptozocin treatment, were markedly restored both in plasma and tissues together with nuclear sirtuins activity (Sirt1). Results suggested that B. etnensis bark alcoholic extract is able to counteract oxidative stress and to ameliorate some general parameters related to diabetes.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Barbara Tomasello
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Alfonsina La Mantia
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Francesco Pappalardo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Monica Ragusa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Marcella Renis
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| |
Collapse
|