1
|
Tumoglu B, Keelaghan A, Avci FY. Tn antigen interactions of macrophage galactose-type lectin (MGL) in immune function and disease. Glycobiology 2023; 33:879-887. [PMID: 37847609 PMCID: PMC10859631 DOI: 10.1093/glycob/cwad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Protein-carbohydrate interactions are essential in maintaining immune homeostasis and orchestrating inflammatory and regulatory immune processes. This review elucidates the immune interactions of macrophage galactose-type lectin (MGL, CD301) and Tn carbohydrate antigen. MGL is a C-type lectin receptor (CLR) primarily expressed by myeloid cells such as macrophages and immature dendritic cells. MGL recognizes terminal O-linked N-acetylgalactosamine (GalNAc) residue on the surface proteins, also known as Tn antigen (Tn). Tn is a truncated form of the elongated cell surface O-glycan. The hypoglycosylation leading to Tn may occur when the enzyme responsible for O-glycan elongation-T-synthase-or its associated chaperone-Cosmc-becomes functionally inhibited. As reviewed here, Tn expression is observed in many different neoplastic and non-neoplastic diseases, and the recognition of Tn by MGL plays an important role in regulating effector T cells, immune suppression, and the recognition of pathogens.
Collapse
Affiliation(s)
- Berna Tumoglu
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Aidan Keelaghan
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, United States
| |
Collapse
|
2
|
Szczykutowicz J. Ligand Recognition by the Macrophage Galactose-Type C-Type Lectin: Self or Non-Self?-A Way to Trick the Host's Immune System. Int J Mol Sci 2023; 24:17078. [PMID: 38069400 PMCID: PMC10707269 DOI: 10.3390/ijms242317078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
3
|
Sun Z, Ji S, Wu J, Tian J, Quan W, Shang A, Ji P, Xiao W, Liu D, Wang X, Li D. Proteomics-Based Identification of Candidate Exosomal Glycoprotein Biomarkers and Their Value for Diagnosing Colorectal Cancer. Front Oncol 2021; 11:725211. [PMID: 34737948 PMCID: PMC8560707 DOI: 10.3389/fonc.2021.725211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Early diagnosis and treatment of colorectal cancer (CRC) significantly improves the survival rate and quality of life. Here we screened for differences in glycoproteins associated with tumor-derived exosomes and validated their clinical value to serve as liquid biopsy biomarkers to diagnosed early CRC. Exosomes were extracted from paracancerous tissues, cancer tissues, and plasma. LC-MS/MS proteomic and glycoproteomics analyses were performed using an LTQ-Orbitrap Elite mass spectrometer. The differences in glycoproteins associated with exosomes of paracancerous tissues and cancer tissue were determined, and their levels in plasma exosomes were determined. Statistical analysis was performed to evaluate the diagnostic efficacy of exosome-associated glycoproteins for CRC. We found that the levels of fibrinogen beta chain (FGB) and beta-2-glycoprotein 1 (β2-GP1) in the exosome of CRC tissue were significantly higher compared with those of paracancerous tissues exosome. The areas under the receiver operating characteristic (ROC) curves of plasma exosomal FGB and β2-GP1 as biomarkers for CRC were 0.871 (95% CI = 0.786–0.914) and 0.834 (95% CI = 0.734–0.901), respectively, compared with those of the concentrations of carcinoembryonic antigen concentration [0.723 (95% CI = 0.679–0.853)] and carbohydrate antigen19-9 concentration [0.614 (95% CI = 0.543–0.715)]. Comprehensive proteomics analyses of plasma exosomal biomarkers in CRC identified biomarkers with significant diagnostic efficacy for early CRC, which can be measured using relatively non-invasive techniques.
Collapse
Affiliation(s)
- Zujun Sun
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shurong Ji
- Department of General Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junlu Wu
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiale Tian
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Quan
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Ji
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Xuan Wang
- Department of Pharmacy, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Li
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Ali H, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. The myeloid cell biomarker EMR1 is ectopically expressed in colon cancer. Tumour Biol 2021; 43:209-223. [PMID: 34486997 DOI: 10.3233/tub-200082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The microenvironment of colon cancer (CC) is heterogeneous including cells of myeloid lineage affecting tumor growth and metastasis. Two functional subtypes of myeloid cells have been identified; one (M1) is tumor-inhibitory and the other one (M2) is tumor-promoting. Whether the three myeloid markers EMR1, CD206 and CD86 are expressed only in the infiltrating myeloid cells or also in the tumor cells was investigated. METHODS Expression of the myeloid markers was investigated in CC at the mRNA and protein levels in primary tumors and lymph nodes. mRNA expression was also determined in 5 CC cell lines. Protein expression was investigated by two-color immunofluorescence and consecutive-sections-immune-staining combined with morphometry using specific antibodies for the myeloid cell markers and the epithelial cell markers CEACAM5 and EpCAM. RESULTS EMR1 and CD86, but not CD206, mRNA levels were significantly higher in CC primary tumors compared to apparently normal colon tissue (P < 0.0001). EMR1 mRNA levels were significantly higher in both hematoxylin-eosin positive (H&E(+)) and H&E(-) lymph nodes of CC patients compared to control nodes (P = 0.03 and P = 0.01, respectively). EMR1 and CD206 mRNAs were expressed in 4/5 and 5/5 CC cell lines, respectively, while CD86 mRNA was not expressed. Immuno-morphometry revealed that about 20% of the tumor cells expressed EMR1 and CD206. Positive cells were tumor cells as revealed by anti-CEACAM5 and anti-EpCAM staining. The number of EMR1, CD206 and CD86 positive cells were significantly increased in CC primary tumors compared to normal colon tissue (P < 0.0001). However, CD206 was also expressed in normal colonocytes. Only EMR1 showed significantly increased numbers of positive tumor cells in H&E(+) nodes compared to H&E(-) nodes (P = 0.001). EMR1 expression in CC tumor cells correlated with CXCL17 expressing tumor cells. CONCLUSION EMR1, like the chemokine CXCL17, is ectopically expressed in colon cancer possibly in the same cancer cells.
Collapse
Affiliation(s)
- Haytham Ali
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden.,Department of Radiation Sciences, Oncology, Umeå University, SE-90185, Umeå, Sweden.,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lina Olsson
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, SE-25187, Lund, Sweden
| | - Marie-Louise Hammarström
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
| | - Sten Hammarström
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden.,Department of Radiation Sciences, Oncology, Umeå University, SE-90185, Umeå, Sweden
| |
Collapse
|
5
|
Szczykutowicz J, Tkaczuk-Włach J, Ferens-Sieczkowska M. Glycoproteins Presenting Galactose and N-Acetylgalactosamine in Human Seminal Plasma as Potential Players Involved in Immune Modulation in the Fertilization Process. Int J Mol Sci 2021; 22:ijms22147331. [PMID: 34298952 PMCID: PMC8303229 DOI: 10.3390/ijms22147331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
In light of recent research, there is increasing evidence showing that extracellular semen components have a significant impact on the immune reaction of the female partner, leading to the tolerogenic response enabling the embryo development and implantation as well as further progress of healthy pregnancy. Seminal plasma glycoproteins are rich in the unique immunomodulatory glycoepitopes that may serve as ligands for endogenous lectins that decorate the surface of immune cells. Such interaction may be involved in modulation of the maternal immune response. Among immunomodulatory glycans, Lewis type antigens have been of interest for at least two decades, while the importance of T/Tn antigens and related structures is still far from understanding. In the current work, we applied two plant lectins capable of distinguishing glycoepitopes with terminal GalNAc and Gal to identify glycoproteins that are their efficient carriers. By means of lectin blotting and lectin affinity chromatography followed by LC-MS, we identified lactotransferrin, prolactin inducible protein as well as fibronectin and semenogelins 1 and 2 as lectin-reactive. Net-O-glycosylation analysis results indicated that the latter three may actually carry T and/or Tn antigens, while in the case of prolactin inducible protein and lactotransferrin LacdiNAc and lactosamine glycoepitopes were more probable. STRING bioinformatics analysis linked the identified glycoproteins in the close network, indicating their involvement in immune (partially innate) processes. Overall, our research revealed potential seminal plasma ligands for endogenous Gal/GalNAc specific lectins with a possible role in modulation of maternal immune response during fertilization.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
| | - Joanna Tkaczuk-Włach
- Laboratory of Diagnostic Techniques, Medical University of Lublin, 20-081 Lublin, Poland;
- Family Health Centre AB OVO, 20-819 Lublin, Poland
| | - Mirosława Ferens-Sieczkowska
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
6
|
Oxonium Ion Guided Analysis of Quantitative Proteomics Data Reveals Site-Specific O-Glycosylation of Anterior Gradient Protein 2 (AGR2). Int J Mol Sci 2021; 22:ijms22105369. [PMID: 34065225 PMCID: PMC8160981 DOI: 10.3390/ijms22105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between O-GalNAc and O-GlcNAc. Here, we thought to investigate how such information can be used to examine quantitative proteomics data. For this purpose, we used tandem mass tag (TMT)-labeled samples from total cell lysates and secreted proteins from three different colorectal cancer cell lines. Following automated glycopeptide assignment (Byonic) and evaluation of the presence and relative intensity of oxonium ions, we observed that, in particular, the ratio of the ions at m/z 144.066 and 138.055, respectively, could be used to discriminate between O-GlcNAcylated and O-GalNAcylated peptides, with concomitant relative quantification between the different cell lines. Among the O-GalNAcylated proteins, we also observed anterior gradient protein 2 (AGR2), a protein which glycosylation site and status was hitherto not well documented. Using a combination of multiple fragmentation methods, we then not only assigned the site of modification, but also showed different glycosylation between intracellular (ER-resident) and secreted AGR2. Overall, our study shows the potential of broad application of the use of the relative intensities of oxonium ions for the confident assignment of glycopeptides, even in complex proteomics datasets.
Collapse
|
7
|
Liu D, Meng L, Huang L, Luo S, Zhang G. Preparation of a boronate-affinity monolithic column for adsorption of nucleosides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5635-5641. [PMID: 33200160 DOI: 10.1039/d0ay01860k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan is a considerably versatile and promising biomaterial and can easily form a 3D hierarchical porous scaffold. In this work, a novel boronate-affinity monolithic column modified with a boronic acid-chitosan complex was prepared and characterized by different methods such as Fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis, specific surface area analysis and pore size distribution analysis. The synthesized monolithic column was used for polymer monolithic microextraction combined with high performance liquid chromatography for the simultaneous determination of cytidine, uridine, inosine, and guanosine in milk powder samples. Several parameters affecting extraction efficiency, including the eluent proportion, eluent flow rate, sample flow rate, sample volume, and sample pH were investigated. The boronate-affinity monolithic column showed high enrichment ability due to the selective formation of cyclic borate esters between nucleosides and boronic acid groups at high pH and the release of cyclic borates at low pH values. Under the optimum operating conditions, the linear range was 0.1-50 μg mL-1, and the correlation coefficients were in the range of 0.9993-0.9994. The LOD and LOQ were in the range of 0.0027-0.0034 and 0.0090-0.011 μg mL-1, respectively. In addition, the results of recovery and relative standard deviation were satisfactory.
Collapse
Affiliation(s)
- Dan Liu
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | | | | | | | | |
Collapse
|