1
|
Abdellaoui N, Kim MS. Transcriptome Profiling of Gene Expression in Atlantic Salmon (Salmo salar) at Early Stage of Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:964-974. [PMID: 39110288 DOI: 10.1007/s10126-024-10354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 10/17/2024]
Abstract
For Atlantic salmon development, the most critical phase is the early development stage from egg to fry through alevin. However, the studies investigating the early development of Atlantic salmon based on RNA-seq are scarce and focus only on one stage of development. Therefore, using the RNA-seq technology, the assessment of different gene expressions of various early development stages (egg, alevin, and fry) was performed on a global scale. Over 22 GB of clean data was generated from 9 libraries with three replicates for each stage with over 90% mapping efficiency. A total of 5534 genes were differentially expressed, among which 19, 606, and 826 genes were specifically expressed in each stage, respectively. The transcriptome analysis showed that the number of differentially expressed genes (DEGs) increased as the Atlantic salmon progressed in development from egg to fry stage. In addition, gene ontology enrichment demonstrated that egg and alevin stages are characterized by upregulation of genes involved in spinal cord development, neuron projection morphogenesis, axonogenesis, and cytoplasmic translation. At the fry stage, upregulated genes were enriched in the muscle development process (muscle cell development, striated muscle cell differentiation, and muscle tissue development), immune system (defense response and canonical NF-kappaB signal transduction), as well as epidermis development. These results suggest that the early development of Atlantic salmon is characterized by a dynamic shift in gene expression and DEGs between different stages, which provided a solid foundation for the investigation of Atlantic salmon development.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea.
| |
Collapse
|
2
|
Li C, Yang Z, Xu X, Meng L, Liu S, Yang D. Conserved and specific gene expression patterns in the embryonic development of tardigrades. Evol Dev 2024; 26:e12476. [PMID: 38654704 DOI: 10.1111/ede.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.
Collapse
Affiliation(s)
- Chaoran Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhixiang Yang
- School of Life Sciences, Hebei University, Baoding, China
| | - Xiaofang Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lingling Meng
- School of Life Sciences, Hebei University, Baoding, China
| | - Shihao Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
3
|
Deng WJ, Li QQ, Shuai HN, Wu RX, Niu SF, Wang QH, Miao BB. Whole-Genome Sequencing Analyses Reveal the Evolution Mechanisms of Typical Biological Features of Decapterus maruadsi. Animals (Basel) 2024; 14:1202. [PMID: 38672351 PMCID: PMC11047736 DOI: 10.3390/ani14081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Decapterus maruadsi is a typical representative of small pelagic fish characterized by fast growth rate, small body size, and high fecundity. It is a high-quality marine commercial fish with high nutritional value. However, the underlying genetics and genomics research focused on D. maruadsi is not comprehensive. Herein, a high-quality chromosome-level genome of a male D. maruadsi was assembled. The assembled genome length was 716.13 Mb with contig N50 of 19.70 Mb. Notably, we successfully anchored 95.73% contig sequences into 23 chromosomes with a total length of 685.54 Mb and a scaffold N50 of 30.77 Mb. A total of 22,716 protein-coding genes, 274.90 Mb repeat sequences, and 10,060 ncRNAs were predicted, among which 22,037 (97%) genes were successfully functionally annotated. The comparative genome analysis identified 459 unique, 73 expanded, and 52 contracted gene families. Moreover, 2804 genes were identified as candidates for positive selection, of which some that were related to the growth and development of bone, muscle, cardioid, and ovaries, such as some members of the TGF-β superfamily, were likely involved in the evolution of typical biological features in D. maruadsi. The study provides an accurate and complete chromosome-level reference genome for further genetic conservation, genomic-assisted breeding, and adaptive evolution research for D. maruadsi.
Collapse
Affiliation(s)
| | | | | | | | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.-J.D.); (Q.-Q.L.); (H.-N.S.); (R.-X.W.); (Q.-H.W.); (B.-B.M.)
| | | | | |
Collapse
|
4
|
Dynamic Transcriptional Landscape of Grass Carp (Ctenopharyngodon idella) Reveals Key Transcriptional Features Involved in Fish Development. Int J Mol Sci 2022; 23:ijms231911547. [PMID: 36232849 PMCID: PMC9569805 DOI: 10.3390/ijms231911547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
A high-quality baseline transcriptome is a valuable resource for developmental research as well as a useful reference for other studies. We gathered 41 samples representing 11 tissues/organs from 22 important developmental time points within 197 days of fertilization of grass carp eggs in order to systematically examine the role of lncRNAs and alternative splicing in fish development. We created a high-quality grass carp baseline transcriptome with a completeness of up to 93.98 percent by combining strand-specific RNA sequencing and single-molecule real-time RNA sequencing technologies, and we obtained temporal expression profiles of 33,055 genes and 77,582 transcripts during development and tissue differentiation. A family of short interspersed elements was preferentially expressed at the early stage of zygotic activation in grass carp, and its possible regulatory components were discovered through analysis. Additionally, after thoroughly analyzing alternative splicing events, we discovered that retained intron (RI) alternative splicing events change significantly in both zygotic activation and tissue differentiation. During zygotic activation, we also revealed the precise regulatory characteristics of the underlying functional RI events.
Collapse
|
5
|
Ma X, Zhang X, Qiao Y, Zhong S, Xing Y, Chen X. Weighted gene co-expression network analysis of embryos and first instar larvae of the horseshoe crab Tachypleus tridentatus uncovers development gene networks. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100980. [PMID: 35303535 DOI: 10.1016/j.cbd.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Horseshoe crabs are marine chelicerates that have existed on Earth for about 450 million years, and they are often used as an experimental model for studying marine invertebrate embryology. In this study, we performed transcriptome gene expression profiling of four continuous embryonic stages (Stages 18-21) and first instar larvae of Tachypleus tridentatus. A mean of 50,742,995 high-quality clean reads was obtained from each library. We then conducted weighted gene co-expression network analysis (WGCNA) for 13,698 genes with fragments per kilobase of exon per million mapped fragments values >5. We identified 17 modules, six of which likely play critical roles in development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes was performed on the biologically significant modules. We found that several pathways, such as hedgehog signaling pathway, VEGF signaling pathway, dorso-ventral axis formation, may be involved in the embryonic development process of T. tridentatus. We also identified hub genes that were highly connected in the six critical modules. This is the first study to apply WGCNA to horseshoe crabs to identify hub genes that may play critical roles in development, and our results provide new insight into the mechanisms underlying early development in horseshoe crabs.
Collapse
Affiliation(s)
- Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xingzhi Zhang
- Guangxi Institute of Fisheries, Nanning 530000, People's Republic of China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China.
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, People's Republic of China.
| | - Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| |
Collapse
|
6
|
Ma X, Shang M, Su B, Wiley A, Bangs M, Alston V, Simora RM, Nguyen MT, Backenstose NJC, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Transcriptome Analysis During the Seven Developmental Stages of Channel Catfish ( Ictalurus punctatus) and Tra Catfish ( Pangasianodon hypophthalmus) Provides Novel Insights for Terrestrial Adaptation. Front Genet 2021; 11:608325. [PMID: 33552125 PMCID: PMC7859520 DOI: 10.3389/fgene.2020.608325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
Abstract
Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Anne Wiley
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Mai Thi Nguyen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| |
Collapse
|