1
|
Sharaby I, Alksas A, Abou El-Ghar M, Eldeeb M, Ghazal M, Gondim D, El-Baz A. Biomarkers for Kidney-Transplant Rejection: A Short Review Study. Biomedicines 2023; 11:2437. [PMID: 37760879 PMCID: PMC10525551 DOI: 10.3390/biomedicines11092437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney transplantation is the preferred treatment for end-stage renal failure, but the limited availability of donors and the risk of immune rejection pose significant challenges. Early detection of acute renal rejection is a critical step to increasing the lifespan of the transplanted kidney. Investigating the clinical, genetic, and histopathological markers correlated to acute renal rejection, as well as finding noninvasive markers for early detection, is urgently needed. It is also crucial to identify which markers are associated with different types of acute renal rejection to manage treatment effectively. This short review summarizes recent studies that investigated various markers, including genomics, histopathology, and clinical markers, to differentiate between different types of acute kidney rejection. Our review identifies the markers that can aid in the early detection of acute renal rejection, potentially leading to better treatment and prognosis for renal-transplant patients.
Collapse
Affiliation(s)
- Israa Sharaby
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (M.A.E.-G.); (M.E.)
| | - Mona Eldeeb
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (M.A.E.-G.); (M.E.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Dibson Gondim
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA (A.A.)
| |
Collapse
|
2
|
Teng Y, Xia L, Huang Z, Yao L, Wu Q. Long noncoding RNA LINC01882 ameliorates aGVHD via skewing CD4 + T cell differentiation toward Treg cells. Am J Physiol Cell Physiol 2023; 324:C395-C406. [PMID: 36409171 DOI: 10.1152/ajpcell.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe T cell-mediated immune response after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the molecular mechanisms remain to be elucidated and novel treatments are necessary to be developed. In the present study, we found that the expression of long noncoding RNA (lncRNA) LINC01882 decreased significantly in the peripheral blood CD4+ T lymphocytes of patients with aGVHD than non-aGVHD patients. In addition, lncRNA LINC01882 overexpression promoted Treg differentiation but exhibited no effects on Th17 percentages, while its knockdown resulted in opposite effects. Mechanistically, lncRNA LINC01882 could competitively bind with let-7b-5p to prevent the degradation of its target gene smad2, which acts as a promoter in Treg differentiation. Furthermore, the mice cotransplanted with LINC01882-overexpressed CD4+ T cells with PBMCs had a lower histological GVHD score and higher survival rate compared with control mice. In conclusion, our study discloses a novel LINC01882/let-7b-5p/smad2 pathway in the modulation of aGVHD and indicates that lncRNA LINC01882 could be a promising biomarker and therapeutic target for patients with aGVHD.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Huang L, Li Y, Wang P, Xie Y, Liu F, Mao J, Miao J. Integrated analysis of immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network in children with Henoch Schönlein purpura nephritis. Transl Pediatr 2022; 11:1682-1696. [PMID: 36345450 PMCID: PMC9636465 DOI: 10.21037/tp-22-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children. METHODS Differential analysis was employed to identify the differentially expressed lncRNAs, as well as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. Spearman's correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the peripheral blood samples of children with HSPN. RESULTS By intersecting the differentially expressed immune-related and apoptosis-related genes through GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the specific regulatory network may act as potential biomarkers with prognosis in children with HSPN. CONCLUSIONS LncRNAs may play essential regulatory roles in the occurrence and development of HSPN in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in children.
Collapse
Affiliation(s)
- Lingfei Huang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Yanhong Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Pu Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Xiang X, Zhu J, Dong G, Dong Z. Epigenetic Regulation in Kidney Transplantation. Front Immunol 2022; 13:861498. [PMID: 35464484 PMCID: PMC9024296 DOI: 10.3389/fimmu.2022.861498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Kidney transplantation is a standard care for end stage renal disease, but it is also associated with a complex pathogenesis including ischemia-reperfusion injury, inflammation, and development of fibrosis. Over the past decade, accumulating evidence has suggested a role of epigenetic regulation in kidney transplantation, involving DNA methylation, histone modification, and various kinds of non-coding RNAs. Here, we analyze these recent studies supporting the role of epigenetic regulation in different pathological processes of kidney transplantation, i.e., ischemia-reperfusion injury, acute rejection, and chronic graft pathologies including renal interstitial fibrosis. Further investigation of epigenetic alterations, their pathological roles and underlying mechanisms in kidney transplantation may lead to new strategies for the discovery of novel diagnostic biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States.,Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiefu Zhu
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| |
Collapse
|
5
|
Salehi S, Afzali S, Shahi A, Amirzargar AA, Mansoori Y. Potential Roles of Long Noncoding RNAs as Therapeutic Targets in Organ Transplantation. Front Immunol 2022; 13:835746. [PMID: 35359941 PMCID: PMC8962195 DOI: 10.3389/fimmu.2022.835746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Organ transplantation is the most preferred treatment option for end-stage organ diseases; however, allograft rejection is the major hurdle in successful long-term transplant survival. In spite of developing better HLA matching and more effective immunosuppressive regimen, one-year graft survival has been increased by nearly 90% and the incidence of acute rejection by one-year post-transplantation has been decreased by 12.2% in the last decades, chronic allograft rejection has remained as one of the major obstacles to the long-lasting survival of the transplanted allograft. Therefore, seemingly preventing the allograft rejection and inducing immunological tolerance against transplanted allografts is one of the primary goals in transplantation research to enable long-lasting graft survival. Various mechanisms such as long noncoding RNAs (lncRNAs) have been proposed that induce immune tolerance by modulating the gene expression and regulating innate and adaptive immune responses during transplantation. Besides, because of involvement in regulating epigenetic, transcriptional, and post-translational mechanisms, lncRNAs could affect allograft status. Therefore, these molecules could be considered as the potential targets for prediction, prognosis, diagnosis, and treatment of graft rejection. It is suggested that the noninvasive predictive biomarkers hold promise to overcome the current limitations of conventional tissue biopsy in the diagnosis of rejection. Hence, this review aims to provide a comprehensive overview of lncRNAs and their function to facilitate diagnosis, prognosis, and prediction of the risk of graft rejection, and the suggestive therapeutic choices after transplantation.
Collapse
Affiliation(s)
- Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Teng Y, Huang Z, Yao L, Wang Y, Li T, Guo J, Wei R, Xia L, Wu Q. Emerging roles of long non-coding RNAs in allotransplant rejection. Transpl Immunol 2021; 70:101408. [PMID: 34015462 DOI: 10.1016/j.trim.2021.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023]
Abstract
Allotransplantation has extensively been employed for managing end-stage organ failure and malignant tumors. Acute and chronic post-transplant rejections are major causes of late morbidity and mortality after allotransplantation. However, there are no objective diagnostic criteria and specific therapy for post-transplant rejections. Owing to key advances in high-throughput RNA sequencing techniques, a wealth of studies have disclosed that long noncoding RNA (lncRNA) expression increased or decreased evidently in biopsies, blood, plasma, urine and specific cells of rejecting patients, and the dysregulated lncRNAs affected the cellular functions and differentiation of the immune system. Hence, we present an overview of the functions of lncRNAs expressed in various immune cells related to allotransplant rejection. Moreover, our review explores the regulatory interplay of relevant lncRNAs and recipients with or without allograft rejection after solid organ transplantations or hematopoietic stem cell transplantation, then discuss whether these relevant lncRNAs can be molecular biomarkers for diagnosis and new therapeutic targets in the management of post-transplanted patients.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruowen Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
García-Estañ J, Vargas F. Editorial for Special Issue-Biomarkers of Renal Disease. Int J Mol Sci 2020; 21:ijms21218077. [PMID: 33138007 PMCID: PMC7662859 DOI: 10.3390/ijms21218077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Joaquín García-Estañ
- Departamento de Fisiologia, Facultad de Medicina, IMIB, Universidad de Murcia, 30120 Murcia, Spain
- Correspondence: (J.G.-E.); (F.V.)
| | - Felix Vargas
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain
- Correspondence: (J.G.-E.); (F.V.)
| |
Collapse
|