1
|
Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024; 12:1758. [PMID: 39200222 PMCID: PMC11352094 DOI: 10.3390/biomedicines12081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it can significantly impact disease management and outcome. The aim of this comprehensive literature review is to provide a summary of current knowledge and ongoing advances in posterior UM pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology, etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies and artificial intelligence-based technologies, are of paramount importance in this review. The fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment modalities is provided, followed by an overview of ongoing preclinical and clinical research studies to provide further insights on potential biomolecular pathway alterations and therapeutic targets for the management of UM. This review is thus an important resource for all healthcare professionals, clinicians, and researchers working in the field of ocular oncology.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Tsz Hin Alexander Lau
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Manuel Paez-Escamilla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Masoumeh H, Tunay D, Demet ÖA, Samuray T, Hülya Y. Exploring of miR-155-5p, miR-181b-5p, and miR-454-3p Expressions in Circulating Cell-Free RNA: Insights from Peripheral Blood of Uveal Malignant Melanoma Patients. Biochem Genet 2024:10.1007/s10528-024-10849-8. [PMID: 38914847 DOI: 10.1007/s10528-024-10849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The identification of novel non-invasive biomarkers is imperative for the early diagnosis and monitoring of malignant melanoma. The objective of this study is to examine the expression levels of miR-155-5p, miR-181b-5p, and miR-454-3p in circulating cell-free RNA obtained from plasma samples of the 72 uveal malignant melanoma patients and to compare these levels with those of 72 healthy controls. The analysis showed that the expression level of the miR-181b-5p has increased 9.25 fold, and expression level of miR-155-5p has increased 6.67 fold, and miR-454-3p expression level has increased 4.14 fold in the patient group compared with the levels in the healthy control group (p = 0.005). It was found that the high expression levels of the three miRNAs were statistically significant in patients compared with in the healthy control group. The statistical evaluations between miRNA expression levels and clinical data showed that miR-155-5p had significant association with radiation therapy (p = 0.040), and miR-454-3p showed a significant association with smoking and alcohol use respectively (p = 0.009, and p = 0.026). The significantly elevated expression levels of miR-181b-5p, miR-155-5p, and miR-454-3p in the circulating cell-free RNA of plasma from uveal melanoma patients, in comparison to those in the healthy control group, suggest the potential usefulness of these biomarkers for both early diagnosis and disease monitoring. However, more extensive and future studies are needed to use these molecules in early diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hassani Masoumeh
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Doğan Tunay
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Department of Medical Pathology, Faculty of Medicine, Istinye University, Cevizlibağ-Zeytinburnu, 34010, Istanbul, Türkiye
| | - Ödemiş Akdeniz Demet
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
- Health Institutes of Türkiye, Türkiye Cancer Institute, Kadıköy, 34734, Istanbul, Türkiye
| | - Tuncer Samuray
- Department of Eye Diseases, Faculty of Medicine, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye
| | - Yazıcı Hülya
- Cancer Genetics Division, Oncology Institute, İstanbul University, Çapa-Fatih, 34093, Istanbul, Türkiye.
- Department of Medical Biology and Genetics, Faculty of Medicine, İstanbul Arel University, Merkez Efendi Mah, Eski Londra Asfalti.Cd., No 1/3, Cevizlibag, Zeytinburnu, 34010, Istanbul, Türkiye.
| |
Collapse
|
3
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
4
|
Brovkina AF, Tsybikova ND. [Epigenetic markers of choroidal melanoma]. Vestn Oftalmol 2024; 140:5-10. [PMID: 38962973 DOI: 10.17116/oftalma20241400315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs (18-25 nucleotides in length) that are important participants in the regulation of gene expression. In 2003, their active role in oncogenesis was demonstrated. In 2008, the first report on the isolation of miRNAs from uveal melanoma (UM) tissue was published. Four years later (2012), the presence of miRNAs in the plasma of patients with this category was shown. To date, changes in the expression level of 100 miRNAs in the plasma of cancer patients (with cancer of various localizations) out of the 2654 miRNAs described in mirbase.org have been proven. In the plasma of patients with UM, changes in the expression of only 13 miRNAs have been confirmed. As a rule, studies were conducted in patients at the stage of hematogenous metastasis of UM. PURPOSE This study analyzed the expression pattern of miRNA-223 and miRNA-126 in patients with localized choroidal melanoma (CM) taking into account biometric parameters in the absence of metastases. MATERIAL AND METHODS Blood plasma of 84 patients with M0N0 CM aged 35-86 years (mean age 63.4±1.2 years) was investigated. The basis for the diagnosis of CM was the results of ophthalmological examination, optical coherence tomography, and ultrasound scanning. In all cases, the absence of metastases was proven (using computed tomography or magnetic resonance imaging). Control - plasma of 28 volunteers (mean age 62.9±1.42 years, age range 45-78 years), who did not have tumoral, autoimmune, or chronic inflammatory processes. The expression levels of miRNAs circulating in blood plasma were determined by real-time polymerase chain reaction. RESULTS An increase in the expression levels of miRNA-223 and miRNA-126 in the plasma of all 84 patients with CM was confirmed compared to the control group. Features of the miRNA expression pattern that emerged with changes in the tumor's quantitative parameters were identified. CONCLUSION Evaluation of the levels of miRNA-223 and miRNA-126 in the blood plasma of patients with CM can be used in clinical practice to clarify the diagnosis of CM, as well as to predict the development of hematogenous metastases.
Collapse
Affiliation(s)
- A F Brovkina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Ophthalmological Center of S.P. Botkin City Clinical Hospital, Moscow, Russia
| | - N D Tsybikova
- Ophthalmological Center of S.P. Botkin City Clinical Hospital, Moscow, Russia
| |
Collapse
|
5
|
Wu J, Duan C, Yang Y, Wang Z, Tan C, Han C, Hou X. Insights into the liver-eyes connections, from epidemiological, mechanical studies to clinical translation. J Transl Med 2023; 21:712. [PMID: 37817192 PMCID: PMC10566185 DOI: 10.1186/s12967-023-04543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of internal homeostasis is a sophisticated process, during which almost all organs get involved. Liver plays a central role in metabolism and involves in endocrine, immunity, detoxification and storage, and therefore it communicates with distant organs through such mechanisms to regulate pathophysiological processes. Dysfunctional liver is often accompanied by pathological phenotypes of distant organs, including the eyes. Many reviews have focused on crosstalk between the liver and gut, the liver and brain, the liver and heart, the liver and kidney, but with no attention paid to the liver and eyes. In this review, we summarized intimate connections between the liver and the eyes from three aspects. Epidemiologically, we suggest liver-related, potential, protective and risk factors for typical eye disease as well as eye indicators connected with liver status. For molecular mechanism aspect, we elaborate their inter-organ crosstalk from metabolism (glucose, lipid, proteins, vitamin, and mineral), detoxification (ammonia and bilirubin), and immunity (complement and inflammation regulation) aspect. In clinical application part, we emphasize the latest advances in utilizing the liver-eye axis in disease diagnosis and therapy, involving artificial intelligence-deep learning-based novel diagnostic tools for detecting liver disease and adeno-associated viral vector-based gene therapy method for curing blinding eye disease. We aim to focus on and provide novel insights into liver and eyes communications and help resolve existed clinically significant issues.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yuanfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
6
|
Wróblewska JP, Lach MS, Rucinski M, Piotrowski I, Galus L, Suchorska WM, Kreis S, Marszałek A. MiRNAs from serum-derived extracellular vesicles as biomarkers for uveal melanoma progression. Front Cell Dev Biol 2022; 10:1008901. [PMID: 36619870 PMCID: PMC9814164 DOI: 10.3389/fcell.2022.1008901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM) is a rare type of malignancy that originates from melanocytes in the choroid, iris and the eye's ciliary body. Biomarkers for early detection and progression of UM, especially the molecular traits governing the development of metastasis, are still not available in clinical practice. One extensively studied components of liquid biopsies are extracellular vesicles. Due to their unique molecular cargo, they can contribute to early cancer development and at the same time carry markers for disease onset and progression. For characterisation of the miRNA profiles present in circulating serum-derived exosomes of patients with diagnosed primary and metastatic UM, we have analyzed the miRNA cargos using next-generation sequencing followed by RT-qPCR validation in a cohort of patients (control n = 20; primary n = 9; metastatic n = 11). Nine miRNAs differentiating these patient groups have been established. We show that hsa-miR-144-5p and hsa-miR-191-5p are the most promising biomarker candidates, allowing the categorization of patients into local and advanced UM. Additionally, the comparison of miRNA expression levels in exosomes derived from UM patients with those derived from healthy donors revealed that hsa-miR-191-5p, -223-3p, -483-5p, -203a has the potential to be used as an early marker for the presence of UM. This pilot study reveals that miRNAs extracted from circulating exosomes could be exploited as potential biomarkers in UM diagnosis and, more importantly, for indicating metastatic spread.
Collapse
Affiliation(s)
- Joanna Patrycja Wróblewska
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland,Department of Tumor Pathology, Greater Poland Cancer Centre, Poznan, Poland,Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg,*Correspondence: Joanna Patrycja Wróblewska,
| | - Michał Stefan Lach
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland,Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer, Poznan, Poland,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer, Poznan, Poland,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer, Poznan, Poland,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Andrzej Marszałek
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland,Department of Tumor Pathology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
7
|
L1CAM and laminin vascular network: Association with the high-risk replacement histopathologic growth pattern in uveal melanoma liver metastases. J Transl Med 2022; 102:1214-1224. [PMID: 36775447 DOI: 10.1038/s41374-022-00803-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
The replacement histopathologic growth pattern (rHGP) in melanoma liver metastases connotes an aggressive phenotype (vascular co-option; angiotropic extravascular migratory spread) and adverse prognosis. Herein, replacement and desmoplastic HGP (dHGP) were studied in uveal melanoma liver metastases (MUM). In particular, L1CAM and a "laminin vascular network" were detected at the advancing front of 14/20 cases (p = 0.014) and 16/20 cases (p = 6.4e-05) rHGPs, respectively, but both were absent in the dHGP (8/8 cases) (p = 0.014, and p = 6.3e-05, respectively). L1CAM highlighted progressive extension of angiotropic melanoma cells along sinusoidal vessels in a pericytic location (pericytic mimicry) into the hepatic parenchyma. An inverse relationship between L1CAM expression and melanin index (p = 0.012) suggested differentiation toward an amelanotic embryonic migratory phenotype in rHGP. Laminin labeled the basement membrane zone interposed between sinusoidal vascular channels and angiotropic melanoma cells at the advancing front. Other new findings: any percentage of rHGP and pure rHGP had a significant adverse effect on metastasis-specific overall survival (p = 0.038; p = 0.0064), as well as predominant rHGP (p = 0.0058). Pure rHGP also was associated with diminished metastasis-free survival relative to dHGP (p = 0.040), possibly having important implications for mechanisms of tumor spread. In conclusion, we report for the first time that L1CAM and a laminin vascular network are directly involved in this high-risk replacement phenotype. Further, this study provides more detailed information about the adverse prognostic effect of the rHGP in MUM.
Collapse
|
8
|
Fei X, Xie X, Qin R, Wang A, Meng X, Sun F, Zhao Y, Jiang D, Chen H, Huang Q, Ji X, Wang Z. Proteomics analysis: inhibiting the expression of P62 protein by chloroquine combined with dacarbazine can reduce the malignant progression of uveal melanoma. BMC Cancer 2022; 22:408. [PMID: 35421957 PMCID: PMC9009011 DOI: 10.1186/s12885-022-09499-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although uveal melanoma (UM) at the early stage is controllable to some extent, it inevitably ultimately leads to death due to its metastasis. At present, the difficulty is that there is no way to effectively tackle the metastasis. It is hypothesized that these will be treated by target molecules, but the recognized target molecule has not yet been found. In this study, the target molecule was explored through proteomics. Methods Transgenic enhanced green fluorescent protein (EGFP) inbred nude mice, which spontaneously display a tumor microenvironment (TME), were used as model animal carriers. The UM cell line 92.1 was inoculated into the brain ventricle stimulating metastatic growth of UM, and a graft re-cultured Next, the UM cell line 92.1-A was obtained through monoclonal amplification, and a differential proteomics database, between 92.1 and ectopic 92.1-A, was established. Finally, bioinformatics methodologies were adopted to optimize key regulatory proteins, and in vivo and in vitro functional verification and targeted drug screening were performed. Results Cells and tissues displaying green fluorescence in animal models were determined as TME characteristics provided by hosts. The data of various biological phenotypes detected proved that 92.1-A were more malignant than 92.1. Besides this malignancy, the key protein p62 (SQSTM1), selected from 5267 quantifiable differential proteomics databases, was a multifunctional autophagy linker protein, and its expression could be suppressed by chloroquine and dacarbazine. Inhibition of p62 could reduce the malignancy degree of 92.1-A. Conclusions As the carriers of human UM orthotopic and ectopic xenotransplantation, transgenic EGFP inbred nude mice clearly display the characteristics of TME. In addition, the p62 protein optimized by the proteomics is the key protein that increases the malignancy of 92.1 cells, which therefore provides a basis for further exploration of target molecule therapy for refractory metastatic UM. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09499-z.
Collapse
|
9
|
Wang X, Cui Z, Zeng B, Qiong Z, Long Z. Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark 2022; 34:533-543. [PMID: 35275523 DOI: 10.3233/cbm-210409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melanoma, a skin cancer derived from malignant melanocytes, is characterized by high aggressiveness and mortality. However, its exact etiology is unknown. Recently, the roles of exosomes and exosomal microRNAs (miRNAs) in the progression and therapy of various disorders, including melanoma, have gained attention. We investigated the impact of miR-138-5p from exosomes released by human mesenchymal stem cells (HMSCs) on the pathogenesis of melanoma. We isolated exosomes from HMSCs (HMSC-exos) by ultracentrifugation and verified them by specific biomarkers and transmission electron microscopy. We used CCK8, flow cytometry, quantitative real-time PCR (qRT-PCR), and Western blots to investigate cell proliferation, apoptosis, and mRNA and protein levels, respectively. Additionally, we used luciferase assays to examine the relationship between miR-138-5p and SOX4. Administration of HMSC-exos dramatically repressed the growth of melanoma cells. Elevated miR-138-5p levels in HMSC-exos were linked to increased cell apoptosis, and miR-138-5p downregulation had the opposite effects on cells. SOX4 was targeted by miR-138-5p through direct binding to the SOX4 3'UTR. In melanoma tissues, miR-138-5p was downregulated, and SOX4 was upregulated and was negatively correlated. MiR-138-5p plays a crucial role in melanoma progression. The negative regulation of SOX4 transcription mediates the function of miR-138-5p. These findings provide a novel concept of melanoma pathogenesis and identify a valuable target (miR-138-5p/SOX4 axis) in treating this disease.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China.,Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Zhengfeng Cui
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China.,Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Basangdan Zeng
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Zhaxi Qiong
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Ziwen Long
- Department of Gastric Cancer Sugery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
MicroRNA in refined diagnosis of choroidal melanoma. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetic studies of the level of microRNAs in human oncogenesis indicate their signifi cant role in the development and growth of malignant tumors of various origins. The fi rst works on the role of microRNAs in patients with uveal melanoma appeared in 2008.The aim: to analyze the expression level of miRNA-126 and miRNA-223 in the plasma blood of patients and to determine their signifi cance in the refi ned diagnosis of choroidal melanoma. Materials and methods. We examined 84 patients with choroidal melanoma (CM), mean age – 63.4 ± 1.2 (35–86 y.o.). Localization – a single CM node with a thickness of 0.77–17.19 mm. The control group consisted of 28 volunteers, age – 62.9 ± 1.42 (45–78 y.o.). Plasma miRNA expression levels were determined by real-time PCR.Results. An increase in the level of expression of miRNA-223 and miRNA-126 in blood plasma was confi rmed in all 84 patients with choroidal melanoma N0M0 compared with the control group. An increase in the expression of miRNA-223 and miRNA-126 was proved with an increase in tumor prominence.Conclusion. The obtained results of an increase in the expression of miRNA-223 indicate an increase in cell proliferation, and an increase in the expression of miRNA-126 on the activation of angiogenesis in a growing tumor, which makes it possible to recommend a study of the level of miRNA-223 and miRNA-126 for a more accurate diagnosis of small CM in cases of difficulty of differential diagnosis with other tumor-like diseases of the choroid.
Collapse
|
11
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
12
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
13
|
Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13205192. [PMID: 34680340 PMCID: PMC8534265 DOI: 10.3390/cancers13205192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Human uveal melanoma (UM) is the most common primary intraocular tumor with high metastatic risk in adults. Currently, no effective treatment is available for metastatic UM; therefore, new therapeutic approaches are needed to improve overall survival. Given the increased understanding of microRNAs (miRNAs) and their roles in UM tumorigenesis and metastasis, miRNA-based therapy may offer the hope of improving therapeutic outcomes. This review summarizes the actions of select miRNAs examined in preclinical studies using miRNAs as therapeutic targets in UM. The focus of this review is the application of established nanotechnology-assisted delivery systems to overcome the limitations of therapeutic miRNAs. A blend of therapeutic miRNAs and nanodelivery systems may facilitate the translation of miRNA therapies to clinical settings. Abstract Uveal melanoma (UM) is the most common adult intraocular cancer, and metastatic UM remains deadly and incurable. UM is a complex disease associated with the deregulation of numerous genes and redundant intracellular signaling pathways. As understanding of epigenetic dysregulation in the oncogenesis of UM has increased, the abnormal expression of microRNAs (miRNAs) has been found to be an epigenetic mechanism underlying UM tumorigenesis. A growing number of miRNAs are being found to be associated with aberrant signaling pathways in UM, and some have been investigated and functionally characterized in preclinical settings. This review summarizes the miRNAs with promising therapeutic potential for UM treatment, paying special attention to the therapeutic miRNAs (miRNA mimics or inhibitors) used to restore dysregulated miRNAs to their normal levels. However, several physical and physiological limitations associated with therapeutic miRNAs have prevented their translation to cancer therapeutics. With the advent of nanotechnology delivery systems, the development of effective targeted therapies for patients with UM has received great attention. Therefore, this review provides an overview of the use of nanotechnology drug delivery systems, particularly nanocarriers that can be loaded with therapeutic miRNAs for effective delivery into target cells. The development of miRNA-based therapeutics with nanotechnology-based delivery systems may overcome the barriers of therapeutic miRNAs, thereby enabling their translation to therapeutics, enabling more effective targeting of UM cells and consequently improving therapeutic outcomes.
Collapse
|
14
|
Souri Z, Wierenga APA, Kiliç E, Brosens E, Böhringer S, Kroes WGM, Verdijk RM, van der Velden PA, Luyten GPM, Jager MJ. MiRNAs Correlate with HLA Expression in Uveal Melanoma: Both Up- and Downregulation Are Related to Monosomy 3. Cancers (Basel) 2021; 13:cancers13164020. [PMID: 34439175 PMCID: PMC8393554 DOI: 10.3390/cancers13164020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Uveal melanoma (UM) is a rare ocular malignancy that often gives rise to metastases. Tumours with an inflammatory phenotype have an especially bad prognosis. As an increased HLA expression and the presence of tumour-infiltrating lymphocytes and macrophages may be regulated by miRNAs, we set out to investigate whether any miRNAs are associated with inflammatory parameters in this malignancy. Some miRNAs were increased in UM with a high HLA expression and high T cell numbers, while others were decreased, showing two opposing patterns; however, both patterns were related to the tumour’s chromosome 3/BAP1 status. We conclude that specific miRNAs are related to the inflammatory phenotype and that these are differentially expressed between disomy 3/BAP1-positive versus monosomy 3/BAP1-negative UM. Abstract MicroRNAs are known to play a role in the regulation of inflammation. As a high HLA Class I expression is associated with a bad prognosis in UM, we set out to determine whether any miRNAs were related to a high HLA Class I expression and inflammation. We also determined whether such miRNAs were related to the UM’s genetic status. The expression of 125 miRNAs was determined in 64 primary UM from Leiden. Similarly, the mRNA expression of HLA-A, HLA-B, TAP1, BAP1, and immune cell markers was obtained. Expression levels of 24 of the 125 miRNAs correlated with expression of at least three out of four HLA Class I probes. Four miRNAs showed a positive correlation with HLA expression and infiltration with leukocytes, 20 a negative pattern. In the first group, high miRNA levels correlated with chromosome 3 loss/reduced BAP1 mRNA expression, in the second group low miRNA levels. The positive associations between miRNA-22 and miRNA-155 with HLA Class I were confirmed in the TCGA study and Rotterdam cohort, and with TAP1 in the Rotterdam data set; the negative associations between miRNA-125b2 and miRNA-211 and HLA-A, TAP1, and CD4 were confirmed in the Rotterdam set. We demonstrate two patterns: miRNAs can either be related to a high or a low HLA Class I/TAP1 expression and the presence of infiltrating lymphocytes and macrophages. However, both patterns were associated with chromosome 3/BAP1 status, which suggests a role for BAP1 loss in the regulation of HLA expression and inflammation in UM through miRNAs.
Collapse
Affiliation(s)
- Zahra Souri
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Annemijn P. A. Wierenga
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
| | - Stefan Böhringer
- Department of Medical Statistics, LUMC, 2300 RC Leiden, The Netherlands;
| | - Wilma G. M. Kroes
- Department of Clinical Genetics, LUMC, 2300 RC Leiden, The Netherlands;
| | - Robert M. Verdijk
- Department of Pathology, LUMC, 2333ZA Leiden, The Netherlands;
- Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Pieter A. van der Velden
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Gregorius P. M. Luyten
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
| | - Martine J. Jager
- Department of Ophthalmology, LUMC, 2333ZA Leiden, The Netherlands; (Z.S.); (A.P.A.W.); (P.A.v.d.V.); (G.P.M.L.)
- Correspondence:
| |
Collapse
|
15
|
Bechrakis NE, Bornfeld N, Heindl LM, Skoetz N, Leyvraz S, Joussen AM. Uveal Melanoma - Standardised Procedure in Diagnosis, Therapy and Surveillance. Klin Monbl Augenheilkd 2021; 238:761-772. [PMID: 34376006 DOI: 10.1055/a-1534-0198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Uveal melanoma is a rare intraocular tumour, for which there is currently no national evidence-based guideline in Germany. The aim of this project was to provide a common standard operating procedure (SOP) for the diagnosis, treatment and follow-up care of uveal melanoma, within the network of German leading oncology centres funded by German Cancer Aid. The SOP was created as part of a moderated consensus process. RESULTS AND CONCLUSION In a multistage process, a common SOP was developed for the diagnosis, therapy and follow-up of uveal melanoma, as based on current knowledge of the subject.
Collapse
Affiliation(s)
| | - Norbert Bornfeld
- Zentrum für Erkrankungen des hinteren Augenabschnitts, Universitätsklinikum Essen, Deutschland
| | - Ludwig M Heindl
- Klinik und Poliklinik für Augenheilkunde, Uniklinik Köln, Deutschland
| | - Nicole Skoetz
- Centrum für integrierte Onkologie (CIO) Aachen-Bonn-Köln-Düsseldorf, Medizinische Fakultät und Uniklinik Köln, Deutschland
| | - Serge Leyvraz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Deutschland
| | - Antonia M Joussen
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Deutschland
| |
Collapse
|