1
|
Li L, Zhang X, Li D, Su H, He Y, Xu Z, Zhao Y, Hong Y, Li Q, Xu P, Hong G. CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis. HORTICULTURE RESEARCH 2024; 11:uhae178. [PMID: 39161738 PMCID: PMC11331543 DOI: 10.1093/hr/uhae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Catechins constitute abundant metabolites in tea and have potential health benefits and high economic value. Intensive study has shown that the biosynthesis of tea catechins is regulated by environmental factors and hormonal signals. However, little is known about the coordination of phosphate (Pi) signaling and the jasmonic acid (JA) pathway on biosynthesis of tea catechins. We found that Pi deficiency caused changes in the content of catechins and modulated the expression levels of genes involved in catechin biosynthesis. Herein, we identified two transcription factors of phosphate signaling in tea, named CsPHR1 and CsPHR2, respectively. Both regulated catechin biosynthesis by activating the transcription of CsANR1 and CsMYB5c. We further demonstrated CsSPX1, a Pi pathway repressor, suppressing the activation by CsPHR1/2 of CsANR1 and CsMYB5c. JA, one of the endogenous plant hormones, has been reported to be involved in the regulation of secondary metabolism. Our work demonstrated that the JA signaling repressor CsJAZ3 negatively regulated catechin biosynthesis via physical interaction with CsPHR1 and CsPHR2. Thus, the CsPHRs-CsJAZ3 module bridges the nutrition and hormone signals, contributing to targeted cultivation of high-quality tea cultivars with high fertilizer efficiency.
Collapse
Affiliation(s)
- Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Department of Tea Science, College of Horticulture, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yiyi Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| |
Collapse
|
2
|
Wu X, Liu H, Lian B, Jiang X, Chen C, Tang T, Ding X, Hu J, Zhao S, Zhang S, Wu J. Genome-wide analysis of epigenetic and transcriptional changes in the pathogenesis of RGSV in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1090794. [PMID: 36714706 PMCID: PMC9874293 DOI: 10.3389/fpls.2022.1090794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Rice grassy stunt virus (RGSV), a typical negative single-stranded RNA virus, invades rice and generates several disease signs, including dwarfing, tillering, and sterility. Previous research has revealed that RGSV-encoded proteins can force the host's ubiquitin-proteasome system to utilize them for viral pathogenesis. However, most of the studies were limited to a single omics level and lacked multidimensional data collection and correlation analysis on the mechanisms of RGSV-rice interactions. Here, we performed a comprehensive association analysis of genome-wide methylation sequencing, transcriptome sequencing, and histone H3K9me3 modification in RGSV-infested as well as non-infested rice leaves, and the levels of all three cytosine contexts (CG, CHG and CHH) were found to be slightly lower in RGSV-infected rice leaves than in normal rice. Large proportions of DMRs were distributed in the promoter and intergenic regions, and most DMRs were enriched in the CHH context, where the number of CHH hypo-DMRs was almost twice as high as that of hyper-DMRs. Among the genes with down-regulated expression and hypermethylation, we analyzed and identified 11 transcripts involved in fertility, plant height and tillering, and among the transcribed up-regulated and hypermethylated genes, we excavated 7 transcripts related to fertility, plant height and tillering. By analyzing the changes of histone H3K9me3 modification before and after virus infestation, we found that the distribution of H3K9me3 modification in the whole rice genome was prevalent, mainly concentrated in the gene promoter and gene body regions, which was distinctly different from the characteristics of animals. Combined with transcriptomic data, H3K9me3 mark was found to favor targeting highly expressed genes. After RGSV infection, H3K9me3 modifications in several regions of CTK and BR hormone signaling-related genes were altered, providing important targets for subsequent studies.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongfei Liu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bi Lian
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Jiang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Chen
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianxin Tang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinlun Ding
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Hu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shanshan Zhao
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zhang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Bennett M, Hawk TE, Lopes-Caitar VS, Adams N, Rice JH, Hewezi T. Establishment and maintenance of DNA methylation in nematode feeding sites. FRONTIERS IN PLANT SCIENCE 2023; 13:1111623. [PMID: 36704169 PMCID: PMC9873351 DOI: 10.3389/fpls.2022.1111623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
A growing body of evidence indicates that epigenetic mechanisms, particularly DNA methylation, play key regulatory roles in plant-nematode interactions. Nevertheless, the transcriptional activity of key genes mediating DNA methylation and active demethylation in the nematode feeding sites remains largely unknown. Here, we profiled the promoter activity of 12 genes involved in maintenance and de novo establishment of DNA methylation and active demethylation in the syncytia and galls induced respectively by the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita in Arabidopsis roots. The promoter activity assays revealed that expression of the CG-context methyltransferases is restricted to feeding site formation and development stages. Chromomethylase1 (CMT1), CMT2, and CMT3 and Domains Rearranged Methyltransferase2 (DRM2) and DRM3, which mediate non-CG methylation, showed similar and distinct expression patterns in the syncytia and galls at various time points. Notably, the promoters of various DNA demethylases were more active in galls as compared with the syncytia, particularly during the early stage of infection. Mutants impaired in CG or CHH methylation similarly enhanced plant susceptibility to H. schachtii and M. incognita, whereas mutants impaired in CHG methylation reduced plant susceptibility only to M. incognita. Interestingly, hypermethylated mutants defective in active DNA demethylation exhibited contrasting responses to infection by H. schachtii and M. incognita, a finding most likely associated with differential regulation of defense-related genes in these mutants upon nematode infection. Our results point to methylation-dependent mechanisms regulating plant responses to infection by cyst and root-knot nematodes.
Collapse
|
4
|
Gallo‐Franco JJ, Ghneim‐Herrera T, Tobar‐Tosse F, Romero M, Chaura J, Quimbaya M. Whole-genome DNA methylation patterns of Oryza sativa (L.) and Oryza glumaepatula (Steud) genotypes associated with aluminum response. PLANT DIRECT 2022; 6:e430. [PMID: 36051226 PMCID: PMC9414936 DOI: 10.1002/pld3.430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 05/05/2023]
Abstract
Epigenetic mechanisms in crops have emerged as a fundamental factor in plant adaptation and acclimation to biotic and abiotic stresses. Among described epigenetic mechanisms, DNA methylation has been defined as the most studied epigenetic modification involved in several developmental processes. It has been shown that contrasting methylation marks are associated with gene expression variations between cultivated and wild crop species. In this study, we analyzed single-base resolution methylome maps for Oryza sativa (a cultivated species) and Oryza glumaepatula (a wild species) genotypes grown under control conditions. Our results showed that overall, genome-wide methylation profiles are mainly conserved between both species, nevertheless, there are several differentially methylated regions with species-specific methylation patterns. In addition, we analyzed the association of identified DNA methylation marks in relation with Aluminum-tolerance levels of studied genotypes. We found several differentially methylated regions (DMRs) and DMR-associated genes (DAGs) that are linked with Al tolerance. Some of these DAGs have been previously reported as differentially expressed under Al exposure in O. sativa. Complementarily a Transposable Elements (TE) analysis revealed that specific aluminum related genes have associated-TEs potentially regulated by DNA methylation. Interestingly, the DMRs and DAGs between Al-tolerant and susceptible genotypes were different between O. sativa and O. glumaepatula, suggesting that methylation patterns related to Al responses are unique for each rice species. Our findings provide novel insights into DNA methylation patterns in wild and cultivated rice genotypes and their possible role in the regulation of plant stress responses.
Collapse
Affiliation(s)
| | | | - Fabian Tobar‐Tosse
- Departamento de Ciencias Básicas de la SaludPontificia Universidad Javeriana CaliCaliColombia
| | - Miguel Romero
- Departamento de Electrónica y Ciencias de la computaciónPontificia Universidad Javeriana CaliCaliColombia
| | - Juliana Chaura
- Departamento de Ciencias BiológicasUniversidad ICESICaliColombia
| | - Mauricio Quimbaya
- Departamento de Ciencias Naturales y MatemáticasPontificia Universidad Javeriana CaliCaliColombia
| |
Collapse
|
5
|
Kumar S, Seem K, Kumar S, Vinod KK, Chinnusamy V, Mohapatra T. Pup1 QTL Regulates Gene Expression Through Epigenetic Modification of DNA Under Phosphate Starvation Stress in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:871890. [PMID: 35712593 PMCID: PMC9195100 DOI: 10.3389/fpls.2022.871890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Cytosine methylation, epigenetic DNA modification, is well known to regulate gene expression. Among the epigenetic modifications, 5-methylcytosine (5-mC) has been one of the extensively studied epigenetic changes responsible for regulating gene expression in animals and plants. Though a dramatic change in 5-mC content is observed at the genome level, the variation in gene expression is generally less than that it is expected. Only less is understood about the significance of 5-mC in gene regulation under P-starvation stress in plants. Using whole-genome bisulfite sequencing of a pair of rice [Pusa-44 and its near-isogenic line (NIL)-23 harboring Pup1 QTL] genotypes, we could decipher the role of Pup1 on DNA (de)methylation-mediated regulation of gene expression under P-starvation stress. We observed 13-15% of total cytosines to be methylated in the rice genome, which increased significantly under the stress. The number of differentially methylated regions (DMRs) for hypomethylation (6,068) was higher than those (5,279) for hypermethylated DMRs under the stress, particularly in root of NIL-23. Hypomethylation in CHH context caused upregulated expression of 489 genes in shoot and 382 genes in root of NIL-23 under the stress, wherein 387 genes in shoot and 240 genes in root were upregulated exclusively in NIL-23. Many of the genes for DNA methylation, a few for DNA demethylation, and RNA-directed DNA methylation were upregulated in root of NIL-23 under the stress. Methylation or demethylation of DNA in genic regions differentially affected gene expression. Correlation analysis for the distribution of DMRs and gene expression indicated the regulation of gene mainly through (de)methylation of promoter. Many of the P-responsive genes were hypomethylated or upregulated in roots of NIL-23 under the stress. Hypermethylation of gene body in CG, CHG, and CHH contexts caused up- or downregulated expression of transcription factors (TFs), P transporters, phosphoesterases, retrotransposon proteins, and other proteins. Our integrated transcriptome and methylome analyses revealed an important role of the Pup1 QTL in epigenetic regulation of the genes for transporters, TFs, phosphatases, carbohydrate metabolism, hormone-signaling, and chromatin architecture or epigenetic modifications in P-starvation tolerance. This provides insights into the molecular function of Pup1 in modulating gene expression through DNA (de)methylation, which might be useful in improving P-use efficiency or productivity of rice in P-deficient soil.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar ; ; orcid.org/0000-0002-7127-3079
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
6
|
Wang Z, Chen D, Sun F, Guo W, Wang W, Li X, Lan Y, Du L, Li S, Fan Y, Zhou Y, Zhao H, Zhou T. ARGONAUTE 2 increases rice susceptibility to rice black-streaked dwarf virus infection by epigenetically regulating HEXOKINASE 1 expression. MOLECULAR PLANT PATHOLOGY 2021; 22:1029-1040. [PMID: 34110094 PMCID: PMC8359002 DOI: 10.1111/mpp.13091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 05/08/2023]
Abstract
ARGONAUTE (AGO) proteins play crucial roles in plant defence against virus invasion. To date, the role of OsAGO2 in rice antiviral defence remains largely unknown. In this study, we determined that the expression of OsAGO2 in rice was induced upon rice black-streaked dwarf virus (RBSDV) infection. Using transgenic rice plants overexpressing OsAGO2 and Osago2 mutants generated through transposon-insertion or CRISPR/Cas9 technology, we found that overexpression of OsAGO2 enhanced rice susceptibility to RBSDV infection. Osago2 mutant lines exhibited strong resistance to RBSDV infection through the elicitation of an early defence response, including reprogramming defence gene expression and production of reactive oxygen species (ROS). Compared to Nipponbare control, the expression level of OsHXK1 (HEXOKINASE 1) increased significantly, and the methylation levels of its promoter decreased in the Osago2 mutant on RBSDV infection. The expression profile of OsHXK1 was the opposite to that of OsAGO2 during RBSDV infection. Overexpression of OsHXK1 in rice also induced ROS production and enhanced rice resistance to RBSDV infection. These results indicate that OsHXK1 controls ROS accumulation and is regulated by OsAGO2 through epigenetic regulation. It is noteworthy that the Osago2 mutant plants are also resistant to southern rice black-streaked dwarf virus infection, another member of the genus Fijivirus. Based on the results presented in this paper, we conclude that OsAGO2 modulates rice susceptibility to fijivirus infection by suppressing OsHXK1 expression, leading to the onset of ROS-mediated resistance. This discovery may benefit future rice breeding programmes for virus resistance.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Dongyue Chen
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing, Jiangsu ProvinceChina
| | - Feng Sun
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Wei Guo
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- Key Laboratory of Agricultural Biodiversity and Disease Control of Ministry of EducationCollege of Plant ProtectionYunnan Agricultural UniversityKunming, Yunnan ProvinceChina
| | - Wei Wang
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing, Jiangsu ProvinceChina
| | - Xuejuan Li
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Ying Lan
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Linlin Du
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Shuo Li
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Yongjian Fan
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Yijun Zhou
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
| | - Hongwei Zhao
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing, Jiangsu ProvinceChina
| | - Tong Zhou
- Key Laboratory of Food Quality and SafetyInstitute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu ProvinceChina
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint LaboratoryNanjing, Jiangsu ProvinceChina
| |
Collapse
|