1
|
Wang Y, Liu G, Qiu F, Li X, Diao Y, Yang M, Yang S, Li B, Han Q, Liu J. Corilagin alleviated intestinal ischemia-reperfusion injury by modulating endoplasmic reticulum stress via bonding with Bip. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156011. [PMID: 39265205 DOI: 10.1016/j.phymed.2024.156011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (II/R) injury is a common clinical emergency with high morbidity and mortality. Given the absence of efficacious prophylactic and therapeutic interventions and specific drugs, sustained efforts are essential to develop new targeted drugs. Corilagin, a naturally polyphenolic tannic acid widespread in longan, rambutan and many other edible economic crops with medicinal properties in China, is of interest due to its multiple bioactivities, including the potential to mitigate II/R injuries. Nevertheless, a clear understanding of its molecular targets and the intricate mechanisms against II/R injury remains obscure and requires further elucidation. OBJECTIVE This study aimed to investigate corilagin's pharmacological impact and molecular mechanism for II/R injury. METHODS An animal II/R model was established by clamping superior mesenteric artery (SMA), and the therapeutic efficacy of corilagin against II/R was evaluated by biochemical and pathological analysis. Next, integrated transcriptomic and proteomic analyses was performed to identify key targets. Moreover, endoplasmic reticulum stress (ERS) damage was respectively observed by transmission electron microscope (TEM), immunohistochemistry, TUNEL, flow cytometry and western blotting (WB). Finally, molecular docking, molecular dynamics (MD) simulation, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assays were utilized to assess the interaction between corilagin and binding immunoglobulin protein (Bip, Grp78 or Hspa5), and co-IP assay was conducted to investigate the interaction between Bip and its substrate proteins. RESULTS Corilagin exhibited robust protection against II/R injuries, effectively alleviating intestinal tissue damage and oxidative stress induced by II/R. The modulation of ERS as a potential regulatory mechanism was investigated through an integrated transcriptomic and proteomic analysis, identifying Bip as a key target contributing to corilagin's protective effects. Further experimental evidence using molecular docking, MD simulation, CETSA, and DARTS assays confirmed the potentially direct interaction of corilagin with Bip. This interaction promoted the ubiquitin-dependent degradation of the Bip-substrate complex, thereby suppressing ERS-related signalling pathways, including the IRE1 branch, PERK branch, and ATF6 branch, to alleviate tissue damage. CONCLUSION This study confirmed that corilagin could selectively bind to Bip, facilitating its ubiquitin-dependent recognition and degradation, thereby inhibiting severe endoplasmic reticulum stress signalling and alleviating II/R injury. A detailed mechanistic insight into the action mode of corilagin had been proposed, supporting its potential usage as an ERS inhibitor.
Collapse
Affiliation(s)
- Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Guanting Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Feng Qiu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Xinyi Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China; Technical Innovation Center of New Traditional Chinese Medicine Development and Transformation of Liaoning Province, Dalian 116044, PR China.
| | - Mengjing Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Shuhui Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China; Technical Innovation Center of New Traditional Chinese Medicine Development and Transformation of Liaoning Province, Dalian 116044, PR China.
| | - Qipeng Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China.
| |
Collapse
|
2
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Alicehajic A, Duivenvoorden AAM, Lenaerts K. Unveiling the molecular complexity of intestinal ischemia-reperfusion injury through omics technologies. Proteomics 2024; 24:e2300160. [PMID: 38477684 DOI: 10.1002/pmic.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Intestinal ischemia-reperfusion injury (IR) is implicated in various clinical conditions and causes damage to the intestinal epithelium resulting in intestinal barrier loss. This presents a substantial clinical challenge, emphasizing the importance of gaining a comprehensive understanding of molecular events to aid in the identification of novel therapeutic targets. This review systematically explores the extent to which omics technologies-transcriptomics, proteomics, metabolomics, and metagenomics-have already contributed to deciphering the molecular mechanisms contributing to intestinal IR injury, in in vivo and in vitro animal and human models, and in clinical samples. Recent breakthroughs involve applying omics methodologies on exosomes, organoids, and single cells, shedding light on promising avenues and valuable targets to reduce intestinal IR injury. Future directions aimed at expediting clinical translation are discussed as well and include multi-omics data integration to facilitate the identification of key regulatory nodes driving intestinal IR injury and advancing human organoid models based on the novel insights by single-cell omics technologies, offering hope for clinical application of therapeutic strategies in the years to come.
Collapse
Affiliation(s)
- Anja Alicehajic
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Annet Adriana Maria Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Chu C, Wang X, Chen F, Yang C, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Li J, Ding W. Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy. Cell Prolif 2024; 57:e13538. [PMID: 37691112 PMCID: PMC10771116 DOI: 10.1111/cpr.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia-reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Fang Chen
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Jieshou Li
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
5
|
Abate JC, Lausada N, Vecchio Dezillio L, Moreira J, Marinoff II, Ferreyra Compagnucci MM, Andrés Moreno AM, Largo C, Rumbo M, Hernández Oliveros F, Romanin D, Stringa P. When less is more: Experimental Bishop-Koop technique for reduction in the use of laboratory animals for intestinal pathophysiological studies. Lab Anim 2023; 57:443-454. [PMID: 36748321 DOI: 10.1177/00236772231151563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of animals to gain knowledge and understanding of diseases needs to be reduced and refined. In the field of intestinal research, because of the complexity of the gut immune system, living models testing is mandatory. Based on the 3Rs (replacement, reduction and refinement) principles, we aimed to developed and apply the derived-intestinal surgical procedure described by Bishop and Koop (BK) in rats to refine experimental gastrointestinal procedures and reduce the number of animals used for research employing two models of intestinal inflammation: intestinal ischemia-reperfusion injury and chemical-induced colitis. Our results show the feasibility of the application of the BK technique in rodents, with good success after surgical procedure in both small and large intestine (100% survival, clinical recovery and weight regain). A considerable reduction in the use of the number of rats in both intestinal inflammation models (80% in case of intestinal ischemia-reperfusion damage and 66.6% in chemical-induced colitis in our experimental design) was achieved. Compared with conventional experimental models described by various research groups, we report excellent reproducibility of intestinal damage and functionality, survival rate and clinical status of the animals when BK is applied.
Collapse
Affiliation(s)
- Juan Cruz Abate
- Organ Transplant Laboratory, School of Medicine, National University of La Plata, Argentina
| | - Natalia Lausada
- Organ Transplant Laboratory, School of Medicine, National University of La Plata, Argentina
| | - Leandro Vecchio Dezillio
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Argentina
| | - Jeremías Moreira
- Institute of Translational Medicine, Transplantation and Bioengineering (IMETTyB), Favaloro Foundation University Hospital, Argentina
| | - Ivana Ivanoff Marinoff
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Argentina
| | - Maria Malena Ferreyra Compagnucci
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Argentina
| | - Ane Miren Andrés Moreno
- Department of Pediatric Surgery, La Paz University Hospital, Spain
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Spain
| | - Carlota Largo
- Department of Experimental Surgery (IdiPaz), La Paz University Hospital, Spain
| | - Martín Rumbo
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Argentina
| | - Francisco Hernández Oliveros
- Department of Pediatric Surgery, La Paz University Hospital, Spain
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Spain
| | - David Romanin
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Argentina
| | - Pablo Stringa
- Organ Transplant Laboratory, School of Medicine, National University of La Plata, Argentina
- Institute for Immunological and Pathophysiological Studies (IIFP), School of Exact Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Argentina
- Transplant Group, La Paz University Hospital Health Research Institute (IdiPAZ), Spain
| |
Collapse
|
6
|
Filina YV, Tikhonova IV, Gabdoulkhakova AG, Rizvanov AA, Safronova VG. Mechanisms of ERK phosphorylation triggered via mouse formyl peptide receptor 2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119356. [PMID: 36087811 DOI: 10.1016/j.bbamcr.2022.119356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Formyl peptide receptors (FPRs) are expressed in the cells of the innate immune system and provide binding with pathogen and damage-associated molecular patterns with subsequent activation of the phagocytes for defense reactions such as chemotaxis, secretory degranulation and ROS generation. Probably, FPR2 is one of the unique receptors in the organism; it is able to recognize numerous ligands of different chemical structure, and moreover, these ligands can trigger opposite phagocyte responses promoting either pro- or anti-inflammatory reactions. Therefore, FPR2 and its signaling pathways are of intense research interest. We found only slight activation of ERK1/2 in the response to peptide ligand WKYMVM in the accelerating phase of ROS generation and more intense ERK1/2 phosphorylation in the declining phase of it in mouse bone marrow granulocytes. Lipid agonist BML-111 did not induce significant ERK phosphorylation when applied for 10-1800 s. To some extent co-localization of ERK1/2 and NADPH oxidase subunits was observed even in the intact cells and didn't change under FPR2 stimulation by WKYMVM, while direct PKC activation by PMA resulted to more efficient interaction between ERK1/2 and p47phox/p67phox and their translocation to plasma membrane. We have shown that phosphorylation and activation of ERK1/2 in bone marrow granulocytes depended on FPR2-triggered activity of PI3K and PKC, phosphatase DUSP6, and, the most but not the least, on ROS generation. Since blocking of ROS generation led to a slowdown of ERK activation indicating a significant contribution of ROS to the secondary regulation of ERK activity.
Collapse
Affiliation(s)
- Yu V Filina
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - I V Tikhonova
- Laboratory of Cellular Neurobiology, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russian Federation
| | - A G Gabdoulkhakova
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Central Research Laboratory, Kazan State Medical Academy, Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Kazan, Russian Federation
| | - A A Rizvanov
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - V G Safronova
- Laboratory of Cellular Neurobiology, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
7
|
Wei Y, Chang L, Zhou X. Can Exosomes Derived from Bone Marrow-Derived Stem Cells Help Heal Intestinal Ischemia/Reperfusion Injury? Dig Dis Sci 2022; 67:4971-4973. [PMID: 35624330 DOI: 10.1007/s10620-022-07552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiangyu Zhou
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Lyu H, Ni H, Huang J, Yu G, Zhang Z, Zhang Q. VX-765 prevents intestinal ischemia-reperfusion injury by inhibiting NLRP3 inflammasome. Tissue Cell 2022; 75:101718. [PMID: 35131633 DOI: 10.1016/j.tice.2021.101718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal ischemia-reperfusion injury (IIRI) is a common clinical event that can cause serious consequences. The study aimed to investigated the effect of VX-765 in IIRI and its mechanism. METHODS The hypoxia-reoxygenation (H/R) cell model and IIRI mouse model were generated to examine the in vitro and in vivo effects of VX-765 on IIRI. IIRI was evaluated by histological assessment. ELISA was performed to determine the levels of IL-6, TNF-α, IL-1β, caspase-1, and GSDMD in intestinal tissues as well as the levels of MDA, SOD, CAT, caspase-1, and GSDMD in Caco-2 cells. Relative protein levels of NLRP3, ASC, IL-18, IL-1β, cleaved Caspase1, and GSDMD-N were analyzed by Western blotting. CCK-8 Assay was conducted to determine the optimal concentration of VX-765 for the in vitro studies. Flow cytometry, fluorescence microscopy and real-time PCR (RT-PCR) were used to assess ROS levels and the mRNA levels of IL-18 and IL-1β, respectively. Immunofluorescence staining was performed to examine the subcellular localization of P65 and NLRP3. RESULTS VX-765 reduced IIRI-induced oxidative stress and inflammatory response both in vivo and in vitro, while it decreased the levels of TNF-α, IL-6, IL-1β as well as the modified Park/Chiu scores. The optimal concentration of VX-765 for the in vitro studies was 10 μM. Moreover, VX-765 inhibited the nuclear translocation of P65, reduced oxidative stress and down-regulated the activation of NLRP3 inflammasome. CONCLUSION VX-765 prevents IIRI presumably by inhibiting the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Heping Lyu
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Haizhen Ni
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Jingyong Huang
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Guanfeng Yu
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Zhongjing Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|