1
|
Kowalczyk B, Petzold M, Kaczyński Z, Szuster-Ciesielska A, Luchowski R, Gruszecki WI, Fuchs B, Galuska CE, Choma A, Tarasiuk J, Palusińska-Szysz M. Lipopolysaccharide of Legionella pneumophila Serogroup 1 Facilitates Interaction with Host Cells. Int J Mol Sci 2023; 24:14602. [PMID: 37834049 PMCID: PMC10572746 DOI: 10.3390/ijms241914602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Legionella pneumophila is the primary causative agent of Legionnaires' disease. The mutant-type strain interrupted in the ORF7 gene region responsible for the lipopolysaccharide biosynthesis of the L. pneumophila strain Heysham-1, lacking the O-acetyl groups attached to the rhamnose of the core part, showed a higher surface polarity compared with the wild-type strain. The measurement of excitation energy transfer between fluorophores located on the surface of bacteria and eukaryotic cells showed that, at an early stage of interaction with host cells, the mutant exhibited weaker interactions with Acanthamoeba castellanii cells and THP-1-derived macrophages. The mutant displayed reduced adherence to macrophages but enhanced adherence to A. castellanii, suggesting that the O-acetyl group of the LPS core region plays a crucial role in facilitating interaction with macrophages. The lack of core rhamnose O-acetyl groups made it easier for the bacteria to multiply in amoebae and macrophages. The mutant induced TNF-α production more strongly compared with the wild-type strain. The mutant synthesized twice as many ceramides Cer(t34:0) and Cer(t38:0) than the wild-type strain. The study showed that the internal sugars of the LPS core region of L. pneumophila sg 1 can interact with eukaryotic cell surface receptors and mediate in contacting and attaching bacteria to host cells as well as modulating the immune response to infection.
Collapse
Affiliation(s)
- Bożena Kowalczyk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| | - Markus Petzold
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, University of Technology Dresden, 01069 Dresden, Germany;
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland;
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Wiesław I. Gruszecki
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Beate Fuchs
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany; (B.F.); (C.E.G.)
| | - Christina E. Galuska
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany; (B.F.); (C.E.G.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| | - Jacek Tarasiuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (B.K.); (A.C.); (J.T.)
| |
Collapse
|
2
|
Jakubec M, Rylandsholm FG, Rainsford P, Silk M, Bril'kov M, Kristoffersen T, Juskewitz E, Ericson JU, Svendsen JSM. Goldilocks Dilemma: LPS Works Both as the Initial Target and a Barrier for the Antimicrobial Action of Cationic AMPs on E. coli. Biomolecules 2023; 13:1155. [PMID: 37509189 PMCID: PMC10377513 DOI: 10.3390/biom13071155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane. A combination of SPR and NMR experiments provide evidence suggesting that cationic AMPs first bind to the negatively charged LPS before reaching a binding place in the lipid bilayer. In the event that the initial LPS-binding is too strong (corresponding to a low dissociation rate), the cationic AMPs cannot effectively get from the LPS to the membrane, and their antimicrobial potency will thus be diminished. On the other hand, the AMPs must also be able to effectively interact with the membrane to exert its activity. The ability of the studied cyclic hexapeptides to bind LPS and to translocate into a lipid membrane is related to the nature of the cationic charge (arginine vs. lysine) and to the distribution of hydrophobicity along the molecule (alternating vs. clumped tryptophan).
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Fredrik G Rylandsholm
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Mitchell Silk
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Maxim Bril'kov
- Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Tone Kristoffersen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Johanna U Ericson
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - John Sigurd M Svendsen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
3
|
Host–Pathogen Interaction 3.0. Int J Mol Sci 2022; 23:ijms232112811. [DOI: 10.3390/ijms232112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms can interact with plants, animals and humans in many different ways, e [...]
Collapse
|
4
|
The Role of Lipids in Legionella-Host Interaction. Int J Mol Sci 2021; 22:ijms22031487. [PMID: 33540788 PMCID: PMC7867332 DOI: 10.3390/ijms22031487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Legionella are Gram-stain-negative rods associated with water environments: either natural or man-made systems. The inhalation of aerosols containing Legionella bacteria leads to the development of a severe pneumonia termed Legionnaires' disease. To establish an infection, these bacteria adapt to growth in the hostile environment of the host through the unusual structures of macromolecules that build the cell surface. The outer membrane of the cell envelope is a lipid bilayer with an asymmetric composition mostly of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. The major membrane-forming phospholipid of Legionella spp. is phosphatidylcholine (PC)-a typical eukaryotic glycerophospholipid. PC synthesis in Legionella cells occurs via two independent pathways: the N-methylation (Pmt) pathway and the Pcs pathway. The utilisation of exogenous choline by Legionella spp. leads to changes in the composition of lipids and proteins, which influences the physicochemical properties of the cell surface. This phenotypic plasticity of the Legionella cell envelope determines the mode of interaction with the macrophages, which results in a decrease in the production of proinflammatory cytokines and modulates the interaction with antimicrobial peptides and proteins. The surface-exposed O-chain of Legionella pneumophila sg1 LPS consisting of a homopolymer of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetradeoxy-l-glycero-d-galacto-non-2-ulosonic acid is probably the first component in contact with the host cell that anchors the bacteria in the host membrane. Unusual in terms of the structure and function of individual LPS regions, it makes an important contribution to the antigenicity and pathogenicity of Legionella bacteria.
Collapse
|