1
|
Choi JE, Ahn AR, Zhang J, Kim KM, Park HS, Lee H, Chung MJ, Moon WS, Jang KY. FAM83H Expression Is Associated with Tumor-Infiltrating PD1-Positive Lymphocytes and Predicts the Survival of Breast Carcinoma Patients. Diagnostics (Basel) 2023; 13:2959. [PMID: 37761326 PMCID: PMC10529262 DOI: 10.3390/diagnostics13182959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND FAM83H has been implicated in cancer progression, and PD1 is an important target for anti-cancer immune checkpoint therapy. Recent studies suggest an association between FAM83H expression and immune infiltration. However, studies on the roles of FAM83H and its relationship with PD1 in breast carcinomas have been limited. METHODS Immunohistochemical expression of FAM83H and PD1 and their prognostic significance were evaluated in 198 breast carcinomas. RESULTS The expression of FAM83H in cancer cells was significantly associated with the presence of PD1-positive lymphoid cells within breast carcinoma tissue. Individual and co-expression patterns of nuclear FAM83H and PD1 were significantly associated with shorter survival of breast carcinomas in univariate analysis. In multivariate analysis, the expression of nuclear FAM83H (overall survival, p < 0.001; relapse-free survival, p = 0.003), PD1 (overall survival, p < 0.001; relapse-free survival, p = 0.003), and co-expression patterns of nuclear FAM83H and PD1 (overall survival, p < 0.001; relapse-free survival, p < 0.001) were the independent indicators of overall survival and relapse-free survival of breast carcinoma patients. CONCLUSIONS This study suggests a close association between FAM83H expression and the infiltration of PD1-positive lymphoid cells in breast carcinomas and their expression as the prognostic indicators for breast carcinoma patients, and further studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Pathology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Ae Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
| | - Junyue Zhang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Ho Lee
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Identification of Novel Prognostic Signatures for Clear Cell Renal Cell Carcinoma Based on ceRNA Network Construction and Immune Infiltration Analysis. DISEASE MARKERS 2022; 2022:4033583. [PMID: 35320950 PMCID: PMC8938059 DOI: 10.1155/2022/4033583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Objective. Clear cell renal cell carcinoma (ccRCC) carries significant morbidity and mortality globally and is often resistant to conventional radiotherapy and chemotherapy. Immune checkpoint blockade (ICB) has received attention in ccRCC patients as a promising anticancer treatment. Furthermore, competitive endogenous RNA (ceRNA) networks are crucial for the occurrence and progression of various tumors. This study was aimed at identifying reliable prognostic signatures and exploring potential mechanisms between ceRNA regulation and immune cell infiltration in ccRCC patients. Methods and Results. Gene expression profiling and clinical information of ccRCC samples were obtained from The Cancer Genome Atlas (TCGA) database. Through comprehensive bioinformatic analyses, differentially expressed mRNAs (DEmRNAs;
), lncRNAs (DElncRNAs;
), and miRNAs (DEmiRNAs;
) were identified to establish ceRNA networks. The CIBERSORT algorithm was applied to calculate the proportion of 22 types of tumor-infiltrating immune cells (TIICs) in ccRCC tissues. Subsequently, univariate Cox, Lasso, and multivariate Cox regression analyses were employed to construct ceRNA-related and TIIC-related prognostic signatures. In addition, we explored the relationship between the crucial genes and TIICs via coexpression analysis, which revealed that the interactions between MALAT1, miR-1271-5p, KIAA1324, and follicular helper T cells might be closely correlated with the progression of ccRCC. Ultimately, we preliminarily validated that the potential MALAT1/miR-1271-5p/KIAA1324 axis was consistent with the ceRNA theory by qRT-PCR in the ccRCC cell lines. Conclusion. On the basis of the ceRNA networks and TIICs, we constructed two prognostic signatures with excellent predictive value and explored possible molecular regulatory mechanisms, which might contribute to the improvement of prognosis and individualized treatment for ccRCC patients.
Collapse
|
3
|
Kim MJ, Ha SJ. Differential Role of PD-1 Expressed by Various Immune and Tumor Cells in the Tumor Immune Microenvironment: Expression, Function, Therapeutic Efficacy, and Resistance to Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:767466. [PMID: 34901012 PMCID: PMC8662983 DOI: 10.3389/fcell.2021.767466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
In the tumor immune microenvironment (TIME), tumor cells interact with various cells and operate various strategies to avoid antitumor immune responses. These immune escape strategies often make the TIME resistant to cancer immunotherapy. Neutralizing immune escape strategies is necessary to overcome resistance to cancer immunotherapy. Immune checkpoint receptors (ICRs) expressed in effector immune cells inhibit their effector function via direct interaction with immune checkpoint ligands (ICLs) expressed in tumor cells. Therefore, blocking ICRs or ICLs has been developed as a promising cancer immunotherapy by reinvigorating the function of effector immune cells. Among the ICRs, programmed cell death 1 (PD-1) has mainly been antagonized to enhance the survival of human patients with cancer by restoring the function of tumor-infiltrating (TI) CD8+ T cells. It has been demonstrated that PD-1 is expressed not only in TI CD8+ T cells, but also in other TI immune cells and even tumor cells. While PD-1 suppresses the function of TI CD8+ T cells, it is controversial whether PD-1 suppresses or amplifies the suppressive function of TI-suppressive immune cells (e.g., regulatory T cells, tumor-associated macrophages, and myeloid cells). There is also controversy regarding the role of tumor-expressing PD-1. Therefore, a precise understanding of the expression pattern and function of PD-1 in each cell subset is important for improving the efficacy of cancer immunotherapy. Here, we review the differential role of PD-1 expressed by various TI immune cells and tumor cells. We focused on how cell-type-specific ablation or blockade of PD-1 affects tumor growth in a murine tumor model. Furthermore, we will also describe how the blockade of PD-1 acts on TI immune cells in human patients with cancer.
Collapse
Affiliation(s)
- Myeong Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, South Korea
| |
Collapse
|