1
|
Zhang Z, Liu B, Mei L, Chen R, Zhou H, Li Z. RREB1 could act as an immunological and prognostic biomarker: From comprehensive analysis to osteosarcoma validation. Int Immunopharmacol 2024; 143:113312. [PMID: 39405927 DOI: 10.1016/j.intimp.2024.113312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The Ras-responsive element binding protein 1 (RREB1) is a transcription factor involved in various biological processes. Notably, RREB1 plays a role in tumor immunity by regulating tumor-related gene expression, shaping the tumor microenvironment, and modulating immune checkpoints. Given these functions, RREB1 has emerged as a potential regulatory target in tumor immunotherapy. However, a comprehensive pan-cancer analysis evaluating RREB1's prognostic value and its role in modulating the immune microenvironment remains unexplored, warranting further investigation to better understand its mechanisms across different cancer types and its implications for personalized immunotherapy. METHODS We analyzed RREB1 expression across 33 cancer types using RNA sequencing data from the TCGA database. RREB1 alterations were further characterized using the cBioPortal database. Clinical and pathological features, along with prognostic significance, were assessed using TCGA clinical data. The involvement of RREB1 in the tumor microenvironment was evaluated using the CIBERSORT and ESTIMATE algorithms. Relationships between RREB1 expression and tumor mutation burden (TMB), as well as microsatellite instability (MSI), were investigated using Spearman's rank correlation coefficient. GSEA was applied to explore the biological functions of RREB1. Additionally, we assessed the link between RREB1 expression and the efficacy of PD-1/PD-L1 inhibitors. Finally, a series of in vitro experiments were performed to evaluate the impact of RREB1 expression on the malignant behavior of osteosarcoma (OS) and lung cancer cell lines. RESULTS RREB1 was overexpressed in several cancer types and correlated with patient prognosis. RREB1 expression was strongly associated with TMB, MSI, and immune cell infiltration, including regulatory T cells, CD8+ T cells, and macrophages. Furthermore, RREB1 expression was linked to immune responses and the efficacy of immunotherapy. In vitro experiments demonstrated that knockdown of RREB1 significantly inhibited the proliferation and migration of OS cells. CONCLUSIONS RREB1 shows potential as a prognostic marker for certain cancers and may predict the efficacy of immunotherapy. Additionally, RREB1 expression is related to immune-related markers, suggesting its role in prognosis and predicting responses to immune microenvironment therapies in specific tumors.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lin Mei
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ruiqi Chen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haoyang Zhou
- Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine of The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Mori H, Goji A, Hara M. Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters. Biol Trace Elem Res 2024; 202:4699-4714. [PMID: 38180597 DOI: 10.1007/s12011-023-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn2+ proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn2+ was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O2 and 5%CO2, the high carbon dioxide condition consisting of 21%O2 and 10%CO2, and the normal condition consisting of 21%O2 and 5%CO2 were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O2 and CO2 concentrations.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akari Goji
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
3
|
Xiao F, Chen C, Zhang W, Wang J, Wu K. FOXO3/Rab7-Mediated Lipophagy and Its Role in Zn-Induced Lipid Metabolism in Yellow Catfish ( Pelteobagrus fulvidraco). Genes (Basel) 2024; 15:334. [PMID: 38540393 PMCID: PMC10969980 DOI: 10.3390/genes15030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the -1358/-1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA β-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish.
Collapse
Affiliation(s)
- Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Wuxiao Zhang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jiawei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (F.X.); (C.C.); (J.W.)
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| |
Collapse
|
4
|
Liu SZ, Xu YC, Tan XY, Zhao T, Zhang DG, Yang H, Luo Z. Transcriptional Regulation and Protein Localization of Zip10, Zip13 and Zip14 Transporters of Freshwater Teleost Yellow Catfish Pelteobagrus fulvidraco Following Zn Exposure in a Heterologous HEK293T Model. Int J Mol Sci 2022; 23:8034. [PMID: 35887381 PMCID: PMC9321221 DOI: 10.3390/ijms23148034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Zip family proteins are involved in the control of zinc (Zn) ion homeostasis. The present study cloned the promoters and investigated the transcription responses and protein subcellular localizations of three LIV-1 subfamily members (zip10, zip13, and zip14) from common freshwater teleost yellow catfish, Pelteobagrus fulvidraco, using in vitro cultured HEK293T model cells. The 2278 bp, 1917 bp, and 1989 bp sequences of zip10, zip13, and zip14 promoters, respectively, were subcloned into pGL3-Basic plasmid for promoter activity analysis. The pcDNA3.1 plasmid coding EGFP tagged pfZip10, pfZip13, and pfZip14 were generated for subsequent confocal microscope analysis. Several potential transcription factors' binding sites were predicted within the promoters. In vitro promoter analysis in the HEK293T cells showed that high Zn administration significantly reduced the transcriptional activities of the zip10, zip13, and zip14 promoters. The -2017 bp/-2004 bp MRE in the zip10 promoter, the -360 bp/-345 bp MRE in the zip13 promoter, and the -1457 bp/-1442 bp MRE in the zip14 promoter were functional loci that were involved in the regulation of the three zips. The -606 bp/-594 bp KLF4 binding site in the zip13 promoter was a functional locus responsible for zinc-responsive regulation of zip13. The -1383 bp/-1375 bp STAT3 binding site in the zip14 promoter was a functional locus responsible for zinc-responsive regulation of zip14. Moreover, confocal microscope analysis indicated that zinc incubation significantly reduced the fluorescence intensity of pfZip10-EGFP and pfZip14-EGFP but had no significant influence on pfZip13-EGFP fluorescence intensity. Further investigation found that pfZip10 localizes on cell membranes, pfZip14 colocalized with both cell membranes and lysosome, and pfZip13 colocalized with intracellular ER and Golgi. Our research illustrated the transcription regulation of zip10, zip13, and zip14 from P. fulvidraco under zinc administration, which provided a reference value for the mechanisms involved in Zip-family-mediated control of zinc homeostasis in vertebrates.
Collapse
Affiliation(s)
- Sheng-Zan Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Hong Yang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Gao H, Fan X, Wu QC, Chen C, Xiao F, Wu K. Structural and Functional Analysis of SHP Promoter and Its Transcriptional Response to FXR in Zn-Induced Changes to Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23126523. [PMID: 35742980 PMCID: PMC9224202 DOI: 10.3390/ijms23126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc alleviates hepatic lipid deposition, but the transcriptional regulatory mechanisms are still unclear. In this study, we characterized the promoter of an SHP (short heterodimer partner) in a teleost Pelteobagrus fulvidraco. The binding sites of an FXR (farnesoid X receptor) were predicted by the SHP promoter, indicating that the FXR mediated its transcriptional activity. The site mutagenesis and the EMSA (electrophoretic mobility shift assay) found that the -375/-384 bp FXR site on the SHP promoter was the functional binding locus responsible for the Zn-induced transcriptional activation. A further study of yellow catfish hepatocytes suggested that the activation of the FXR/SHP is responsible for the effect of Zn on the decreasing lipid content. Thus, this study provides direct evidence of the interaction between the FXR and SHP promoter in fish, and accordingly elucidates the potential transcriptional mechanism by which Zn reduces hepatic lipid accumulation.
Collapse
Affiliation(s)
- Han Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Xing Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Qi-Chun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Chuan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Fei Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.G.); (X.F.); (Q.-C.W.); (C.C.); (F.X.)
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
- Correspondence: or
| |
Collapse
|
6
|
Song CC, Chen GH, Zhong CC, Chen F, Chen SW, Luo Z. Transcriptional responses of four slc30a/znt family members and their roles in Zn homeostatic modulation in yellow catfish Pelteobagrus fulvidraco. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194723. [PMID: 34116248 DOI: 10.1016/j.bbagrm.2021.194723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The study characterized their regulatory functions of four znt members (znt1, znt2, znt6 and znt8) in Zn homeostasis in vertebrates. We found that the -1281/-1296 bp locus on the znt1 promoter, the -1/-16 bp locus on the znt2 promoter, the -825/-839 bp locus on the znt6 promoter, the -165/-180 bp locus and the -274/-292 bp STAT3 locus on the znt8 promoter were functional MTF-1 binding sites and had metal responsive element (MRE). Zn incubation increased activities of four znt promoters, which was mediated by MRE sites on znt1, znt2, znt6 and znt8 promoters and by STAT3 binding site on znt8 promoter. Moreover, Zn activated the transcription of these znts genes through MTF-1-MRE-dependent pathway. Zn incubation up-regulated the mRNA and total protein expression of ZnT1, ZnT2 and ZnT8 at both 24 h and 48 h. Overall, for the first time, this study offered novel insights for regulatory mechanism of Zn homeostasis in vertebrates.
Collapse
Affiliation(s)
- Chang-Chun Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong-Chao Zhong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Wei Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
He Y, Zhao T, Chen F, Song C, Zhong C, Luo Z. Functional Analysis of the Promoter Regions of Two Apoptosis-Related Genes ( Bcl-2 and Cycs) and Their Regulation by Zn in Yellow Catfish. Int J Mol Sci 2021; 22:ijms22126291. [PMID: 34208159 PMCID: PMC8230946 DOI: 10.3390/ijms22126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) and cytochrome c (Cycs) are two important proteins relevant to cellular apoptosis. In this study, we characterized the functions of the promoter regions of two apoptosis-related genes, Bcl-2 and Cycs, in yellow catfish Pelteobagrus fulvidraco. We obtained a 1989 bp Bcl-2 promoter and an 1830 bp Cycs promoter and predicted several key transcription factor binding sites (TFBSs) on the promoters, such as Kruppel-like factor 4 (KLF4), signal transducer and activator of transcription factor 3 (STAT3), forkhead box O (FOXO), metal-responsive element (MRE) and hepatocyte nuclear factor 1α (HNF-1α). Zinc (Zn) increased the activities of the Bcl-2 promoter but decreased the activities of the Cycs promoter. Metal-responsive transcription factor 1 (MTF-1) and HNF-1α directly bound with Bcl-2 and Cycs promoters, and they positively regulated the activity of the Bcl-2 promoter but negatively regulated the activity of the Cycs promoter. Zn promoted the binding ability of HNF-1α to the Bcl-2 promoter but decreased its binding ability to the Cycs promoter. However, Zn had no significant effect on the binding capability of MTF-1 to the regions of Bcl-2 and Cycs promoters. Zn upregulated the mRNA and total protein expression of Bcl-2 but downregulated the mRNA and total protein expression of Cycs. At the same time, Annexin V-FITC/PI staining showed that Zn significantly reduced the apoptosis of primary hepatocytes. For the first time, our study provides evidence for the MRE and HNF-1α response elements on the Bcl-2 and Cycs promoters, offering new insight into the mechanism by which Zn affects apoptosis in vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi Luo
- Correspondence: ; Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114
| |
Collapse
|
8
|
Molecular Characterization and Functional Analysis of Two Steroidogenic Genes TSPO and SMAD4 in Yellow Catfish. Int J Mol Sci 2021; 22:ijms22094505. [PMID: 33925909 PMCID: PMC8123483 DOI: 10.3390/ijms22094505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The steroid hormones are required for gonadal development in fish. The present study was undertaken to characterize the cDNA and promoter sequences of TSPO and SMAD4 genes in yellow catfish Pelteobagrus fulvidraco, explored the mRNA tissue expression and deciphered their promoter regions. Yellow catfish TSPO and SMAD4 shared the similar domains to the corresponding genes from other vertebrates. The TSPO and SMAD4 mRNAs were widely expressed in the detected tissues, but at different levels. Several transcription factors were predicted, such as Sp, GATA, AP1, SOX1, SRY, STAT, HNF4α, PPARγ, Pu.1 and FOXL2. PPARγ overexpression increased but STAT3 overexpression reduced TSPO promoter activity, and FOXL2 overexpression inhibited the promoter activity of TSPO and SMAD4. The site mutation and EMSA analysis indicated that TSPO promoter possessed STAT3 and FOXL2 sites. Overall, our provided the novel understanding into the transcriptionally regulatory mechanisms of TSPO and SMAD4 in fish.
Collapse
|