1
|
Shoup D, Priola SA. Chaperone mediated disaggregation of infectious prions releases particles that seed new prion formation in a strain specific manner. J Biol Chem 2024:108062. [PMID: 39662829 DOI: 10.1016/j.jbc.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
The mammalian prion protein can form infectious, non-native, and protease resistant aggregates (PrPD), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrPD seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrPC, into more PrPD. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78. We have recently shown that Grp78 sensitizes PrPD to proteases, indicating structural alterations and leading to its degradation. However, the process of chaperone mediated PrPD disaggregation, the chaperones involved, and the effect of disaggregation on PrPD seeding activity are unclear. We have now monitored the structural modification, disaggregation, and seeding activity of PrPD from two mouse adapted prion strains, 22L and 87V, in the presence of Grp78 and two forms of the Hsp110 disaggregase chaperone family, Hsp105 and Apg-2. We found that both forms of Hsp110 induced similar amounts of disaggregation and structural change in the protease resistant cores of PrPD from both strains. However, 22L PrPD was more susceptible to destabilization and disaggregation by the chaperones than 87V. Surprisingly, despite disaggregation of both strains, only the 22L PrPD aggregates released by the chaperones had seeding activity, with both forms of Hsp110 enhancing the Grp78 mediated release of these aggregates. Our data show that disassembly of PrPD by Grp78 and Hsp110 chaperones can release seeding particles of PrPD in a strain specific manner, potentially facilitating prion replication and spread.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, MT USA.
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| |
Collapse
|
2
|
Laubier J, Van De Wiele A, Barboiron A, Laloë D, Saint-Andrieux C, Castille J, Meloni E, Ernst S, Pellerin M, Floriot S, Daniel-Carlier N, Passet B, Merlet J, Verheyden H, Béringue V, Andréoletti O, Houston F, Vilotte JL, Bourret V, Moazami-Goudarzi K. Variation in the prion protein gene (PRNP) open reading frame sequence in French cervids. Vet Res 2024; 55:105. [PMID: 39227993 PMCID: PMC11373525 DOI: 10.1186/s13567-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
The recent emergence of chronic wasting disease (CWD) in Europe has become a new public health risk for monitoring of wild and farmed cervids. This disease, due to prions, has proliferated in North America in a contagious manner. In several mammalian species, polymorphisms in the prion protein gene (PRNP) play a crucial role in the susceptibility to prions and their spread. To obtain a reliable picture of the distribution of PRNP polymorphisms in the two most common cervid species in France, we sequenced the open reading frame (ORF) of this gene in 2114 animals, 1116 roe deer (Capreolus capreolus) and 998 red deer (Cervus elaphus). Selection criteria such as historical origin, spatial distribution and sex ratio have been integrated to establish this sample collection. Except for one heterozygous animal with a non-synonymous mutation at codon 37 (G37A), all the 1116 French roe deer were monomorphic. Red deer showed greater variation with two non-synonymous substitutions (T98A; Q226E), three synonymous substitutions (codons 21, 78 and 136) and a new 24pb deletion (Δ69-77). We found significant regional variations between French regions in the frequency of the identified substitutions. After cloning of the PRNP ORF from animals presenting multiple non-synonymous polymorphisms, we identified six haplotypes and obtained a total of twelve genotypes. As in other European countries, we highlighted the apparent homogeneity of PRNP in the French roe deer and the existence of a greater diversity in the red deer. These results were in line with European phylogeographic studies on these two species.
Collapse
Affiliation(s)
- Johann Laubier
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Anne Van De Wiele
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Aurélie Barboiron
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Denis Laloë
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | - Johan Castille
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Emma Meloni
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Sonja Ernst
- Friedrich-Loeffler-Institut, Isle of Riems, Germany
| | - Maryline Pellerin
- Research and Scientific Support Department, French Biodiversity Agency (OFB), Vincennes, France
| | - Sandrine Floriot
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | - Bruno Passet
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | - Joël Merlet
- INRAE, CEFS, Toulouse University, Castanet Tolosan, France
| | | | - Vincent Béringue
- INRAE, UVSQ, VIM, University Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225, IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jean-Luc Vilotte
- INRAE, AgroParisTech, GABI, University Paris-Saclay, Jouy-en-Josas, France
| | | | | |
Collapse
|
3
|
Chen Y, Li H, Yang Y, Feng L, Yang L, Zhao J, Xin X, Lv S, Fang X, Wen W, Cui Y, Cui H. Polygalasaponin F ameliorates middle cerebral artery occlusion-induced focal ischemia / reperfusion injury in rats through inhibiting TXNIP/NLRP3 signaling pathway. J Neuroimmunol 2024; 387:578281. [PMID: 38198981 DOI: 10.1016/j.jneuroim.2023.578281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanisms of PGSF on focal ischemia remain unknown; METHODS: In this study, male Sprague Dawley (SD) rats aged 6-8 weeks were initially selected to establish a rat model of middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated; RESULTS: Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1β and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment inhibited apoptosis, and reduced the levels of ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also disrupted the interaction between NLRP3 and TXNIP in vitro; CONCLUSIONS: Our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yao Chen
- Nanjing University of Chinese Medicine, Nanjing 210000, China; Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yan Yang
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Lei Feng
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Ling Yang
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Jie Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Xiaochi Xin
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou 061001, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Weibo Wen
- Nanjing University of Chinese Medicine, Nanjing 210000, China; Yunnan University of Traditional Chinese Medicine, Kunming 650000, China.
| | - Youxiang Cui
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130000, China.
| | - Huantian Cui
- Yunnan University of Traditional Chinese Medicine, Kunming 650000, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266000, China.
| |
Collapse
|
4
|
Wu J, Wang X, Lakkaraju A, Sternke-Hoffmann R, Qureshi BM, Aguzzi A, Luo J. Channel Activities of the Full-Length Prion and Truncated Proteins. ACS Chem Neurosci 2024; 15:98-107. [PMID: 38096481 DOI: 10.1021/acschemneuro.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by the conversion of the cellular prion protein (PrPC) into a misfolded prion form, which is believed to disrupt the cellular membranes. However, the exact mechanisms underlying prion toxicity, including the formation of membrane pores, are not fully understood. The prion protein consists of two domains: a globular domain (GD) and a flexible N-terminus (FT) domain. Although a proximal polybasic amino acid (FT(23-31) sequence of FT is a prerequisite for cellular membrane permeabilization, other functional domain regions may modulate its effects. Through single-channel electrical recordings and cryo-electron microscopy (cryo-EM), we discovered that the FT(23-50) fragment forms pore-shaped oligomers and plays a dominant role in membrane permeabilization within the full-length mouse prion protein (mPrP(23-230)). In contrast, the FT(51-110) domain or the C-terminal domain downregulate the channel activity of FT(23-50) and mPrP(23-230). The addition of prion mimetic antibody, POM1 significantly amplifies mPrP(23-230) membrane permeabilization, whereas POM1_Y104A, a mutant that binds to PrP but cannot elicit toxicity, has a negligible effect on membrane permeabilization. Additionally, the anti-N-terminal antibody POM2 or Cu2+ binds to the FT domain, subsequently enhancing the FT(23-110) channel activity. Importantly, our setup provides a novel approach without an external fused protein to examine the channel activity of truncated PrP in the lipid membranes. We therefore propose that the primary N-terminal residues are essential for membrane permeabilization, while other functional segments of PrP play a vital role in modulating the pathological effects of PrP-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jinming Wu
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xue Wang
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Asvin Lakkaraju
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | | | - Bilal M Qureshi
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Zurich 8093, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Sheng J, Zhang N, Long Z, Zhang X, Zu S, Liu X, Shangguan D. DNA Aptamer Binding Octapeptide Repeat Region of Cellular Prion Protein. Anal Chem 2023; 95:18595-18602. [PMID: 38048047 DOI: 10.1021/acs.analchem.3c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cellular prion protein (PrPC) is highly expressed in a variety of tumor cells and plays a crucial role in neurodegenerative diseases. Its N-terminal domain contains a conserved octapeptide (PHGGGWGQ) repeat sequence. The number of repeats has been correlated with the species as well as the development of associated diseases. Herein, PrPC was identified to be the molecular target of a high-affinity DNA aptamer HA5-68 obtained by cell-SELEX. Aptamer HA5-68 was further optimized to two short sequences (HA5-40-1 and HA5-40-2), and its binding site to PrPC was identified to be located in the loop-stem-loop region of the head of its secondary structure. HA5 series aptamers were demonstrated to bind the octapeptide repeat region of PrPC, as well as the synthesized peptides containing different numbers of octapeptide repeats. The PrPC expression on 42 cell lines was measured by using aptamer HA5-68 as a molecular probe. The clear understanding of the molecular structure and binding mechanism of this set of aptamers will provide information for the design of diagnostic methods and therapeutic drugs targeting PrPC.
Collapse
Affiliation(s)
- Jing Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangru Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zu
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| |
Collapse
|
6
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shoup D, Priola SA. Full-length prion protein incorporated into prion aggregates is a marker for prion strain-specific destabilization of aggregate structure following cellular uptake. J Biochem 2023; 174:165-181. [PMID: 37099550 PMCID: PMC10506170 DOI: 10.1093/jb/mvad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023] Open
Abstract
Accumulation of insoluble aggregates of infectious, partially protease-resistant prion protein (PrPD) generated via the misfolding of protease sensitive prion protein (PrPC) into the same infectious conformer, is a hallmark of prion diseases. Aggregated PrPD is taken up and degraded by cells, a process likely involving changes in aggregate structure that can be monitored by accessibility of the N-terminus of full-length PrPD to cellular proteases. We therefore tracked the protease sensitivity of full-length PrPD before and after cellular uptake for two murine prion strains, 22L and 87V. For both strains, PrPD aggregates were less stable following cellular uptake with increased accessibility of the N-terminus to cellular proteases across most aggregate sizes. However, a limited size range of aggregates was able to better protect the N-termini of full-length PrPD, with the N-terminus of 22L-derived PrPD more protected than that of 87V. Interestingly, changes in aggregate structure were associated with minimal changes to the protease-resistant core of PrPD. Our data show that cells destabilize the aggregate quaternary structure protecting PrPD from proteases in a strain-dependent manner, with structural changes exposing protease sensitive PrPD having little effect on the protease-resistant core, and thus conformation, of aggregated PrPD.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 S. 4th Str, Hamilton, MT 59840 USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 S. 4th Str, Hamilton, MT 59840 USA
| |
Collapse
|
8
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
9
|
Jaffré N, Delmotte J, Mikol J, Deslys JP, Comoy E. Unexpected decrease of full-length prion protein in macaques inoculated with prion-contaminated blood products. Front Mol Biosci 2023; 10:1164779. [PMID: 37214335 PMCID: PMC10196267 DOI: 10.3389/fmolb.2023.1164779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The presence of prion infectivity in the blood of patients affected by variant Creutzfeldt-Jakob disease (v-CJD), the human prion disease linked to the bovine spongiform encephalopathy (BSE), poses the risk of inter-human transmission of this fatal prion disease through transfusion. In the frame of various experiments, we have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD, but the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement, which does not fulfill the classical diagnostic criteria of v-CJD. Here, we show that extensive analyses with current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals, i.e., the biomarker considered responsible for neuronal death and subsequent clinical signs in prion diseases. Conversely, in the spinal cord of these myelopathic primates, we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment. This observed disappearance of the N-terminal fragment of cellular PrP at the level of the lesions may provide the first experimental evidence of a link between loss of function of the cellular prion protein and disease onset. This original prion-induced myelopathic syndrome suggests an unexpected wide extension in the field of prion diseases that is so far limited to pathologies associated with abnormal changes of the cellular PrP to highly structured conformations.
Collapse
|
10
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Halder P, Mitra P. Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants. J Biomol Struct Dyn 2022; 40:11274-11290. [PMID: 34338141 DOI: 10.1080/07391102.2021.1957715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Human familial prion diseases are known to be associated with different single-point mutants of the gene coding for prion protein with a primary focus at several locations of the globular domain. We have identified 12 different single-point pathogenic mutants of human prion protein (HuPrP) with the help of extensive perturbations/mutation technique at multiple locations of HuPrP sequence related to potentiality towards conformational disorders. Among these, some of the mutants include pathogenic variants that corroborate well with the literature reported proteins while majority include some unique single-point mutants that are either not explicitly studied early or studied for variants with different residues at the specific position. Primarily, our study sheds light on the unfolding mechanism of the above mentioned mutants in depth. Besides, we could identify some mutants under investigation that demonstrates not only unfolding of the helical structures but also extension and generation of the β-sheet structures and or simultaneously have highly exposed hydrophobic surface which is assumed to be linked with the production of aggregate/fibril structures of the prion protein. Among the identified mutants, Q212E needs special attention due to its maximum exposure of hydrophobic core towards solvent and E200Q is found to be important due to its maximum extent of β-content. We are also able to identify different respective structural conformations of the proteins according to their degree of structural unfolding and those conformations can be extracted and further studied in detail. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
12
|
Sakaguchi S. Prion Pathogenesis Revealed in a Series of the Special Issues "Prions and Prion Diseases". Int J Mol Sci 2022; 23:6490. [PMID: 35742934 PMCID: PMC9224285 DOI: 10.3390/ijms23126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are a group of devastating neurodegenerative disorders, which include Creutzfeldt-Jakob disease (CJD) in humans, and scrapie and bovine spongiform encephalopathy (BSE) in animals [...].
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
13
|
Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. MEMBRANES 2021; 11:membranes11120978. [PMID: 34940479 PMCID: PMC8704586 DOI: 10.3390/membranes11120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.
Collapse
|
14
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|