1
|
Xu W, Xu J, Shi C, Wu J, Wang H, Wu W, Chen X, Hu L. A novel cataract-causing mutation Ile82Met of γA crystallin trends to aggregate with unfolding intermediate. Int J Biol Macromol 2022; 211:357-367. [PMID: 35513103 DOI: 10.1016/j.ijbiomac.2022.04.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/06/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Cataract is the most common pathogenic ophthalmic disease leading to blindness in children worldwide. Genetic disorder is the leading cause of congenital cataract, among which crystallin mutations have a high incidence. There are few reports on γA-crystallin, one critical member of crystallin superfamilies. In this study, we identified a novel pathogenic mutation (Ile82Met) in γA-crystallin from a three-generation Chinese family with cataract, and investigated the potential molecular mechanism in detail. To elucidate the pathogenic mechanism of I82M mutant, spectroscopic and solubility experiments were performed to determine the difference between the purified γA-crystallin wild type (WT) and I82M mutant under both physiological conditions and environmental stresses (UV irradiation, thermal denaturation or chemical denaturation). The I82M mutant did not affect the secondary/tertiary structure of monomeric γA-crystallin under physiological status, but decreased protein stability and increased aggregatory potency under the stressful treatment. Surprisingly, the chemical denaturation caused I82M to switch from the two-state unfolding of γA-crystallin to three-state unfolding involving an unfolding intermediate. This study expands the genetic variation map of cataract, and provides novel insights into the pathomechanism, in particular, filling in a gap in the understanding of γA-crystallin mutants causing cataract.
Collapse
Affiliation(s)
- Wanyue Xu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Caiping Shi
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jing Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
2
|
Wu J, Xu W, Wu W, Xu J, Zheng S, Shentu X, Chen X. Cataract-causing mutation R48C increases γA-crystallin susceptibility to oxidative stress and ultraviolet radiation. Int J Biol Macromol 2022; 194:688-694. [PMID: 34826455 DOI: 10.1016/j.ijbiomac.2021.11.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Among all congenital cataracts caused by genetic mutations, approximately half are caused by a mutation in crystallin genes, and accounts the leading cause of blindness in children globally. In this study, we investigated the underlying molecular mechanism of R48C mutation (c.142C > T; p.[Arg48Cys]) of γA-crystallin in a Mexican-Mestizo descent family causing congenital cataracts. We purified γA-crystallin wild-type (WT) and R48C mutant and compared their structural characteristics and biophysical properties by Spectroscopic experiments and environmental stress (oxidative stress, ultraviolet irradiation, pH disorders, thermal shock, or chemical denaturation). The R48C mutant did not affect the secondary and tertiary structure of monomer γA-crystallin, nor did it affect its stability to heat shock and chemicals. However, the R48C mutant destroys the oxidative stability of γA-crystallin, which makes the protein more prone to aggregation and precipitation under oxidative conditions. These might be the pathogenesis of γA-crystallin R48C mutant related to congenital cataract and help to develop anti-cataract strategies from the perspective of γA-crystallin.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China; Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Wanyue Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang, China
| | - Wei Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jingjie Xu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London SE1 1UL, United Kingdom
| | - Xingchao Shentu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Xiangjun Chen
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Ophthalmology, 88 Jiefang Road, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Bari KJ. The structural biology of crystallin aggregation: challenges and outlook. FEBS J 2021; 288:5888-5902. [DOI: 10.1111/febs.15684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences Tata Institute of Fundamental Research Hyderabad India
- Department of Chemical Sciences Indian Institute of Science Education and Research Berhampur India
| |
Collapse
|