1
|
Shahbazi M, Wheeler HE, Armstrong GT, Frisina RD, Travis LB, Dolan ME. Comparison of GWAS results between de novo tinnitus and cancer treatment-related tinnitus suggests distinctive roles for genetic risk factors. Sci Rep 2024; 14:27952. [PMID: 39543288 PMCID: PMC11564524 DOI: 10.1038/s41598-024-78274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Tinnitus is a common sensorineural complication that can occur de novo or after cancer treatments involving cisplatin or radiotherapy. Considering the heterogeneous etiology and pathophysiology of tinnitus, the extent to which shared genetic risk factors contribute to de novo tinnitus and cancer treatment-induced tinnitus is not clear. Here we report a GWAS for de novo tinnitus using the UK Biobank cohort with nine loci showing significantly associated variants (p < 5 × 10-8). To our knowledge, significant associations in four of these loci are novel, represented by rs7336872, rs115125870, rs1532898 and rs2537, with UBAC2, NUDT9, TGM4 and MPP2 as their nearest protein coding genes, respectively. Through quantitative comparison of results from GWAS of de novo tinnitus with GWAS of radiation-induced tinnitus, two intronic variants (rs7023227 and rs3780395) from a locus within immunoregulatory gene PD-L1 (CD274) reached the replication threshold using comparison thresholds of 10-5 and 10-4, with no other shared genetic risk factors identified. We did not observe shared genetic risk factors between de novo and cisplatin-induced tinnitus. Our results suggest that genetic risk factors are mainly distinct based on etiology of tinnitus and future efforts to study, prevent or treat tinnitus are expected to benefit from strategies that allow for distinction of cases based on the primary environmental risk factor.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Department of Medicine, University of Chicago, 900 E 57th St., KCBD 7100, Chicago, IL, 60637, USA
| | | | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert D Frisina
- Departments of Medical Engineering and Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, USA
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, IN, USA
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, 900 E 57th St., KCBD 7100, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Naples JG, Rice-Narusch W, Watson NW, Ghulam-Smith M, Holmes S, Li D, Jalisi S. Ototoxicity Review: A Growing Number of Non-Platinum-Based Chemo- and Immunotherapies. Otolaryngol Head Neck Surg 2023; 168:658-668. [PMID: 35439087 DOI: 10.1177/01945998221094457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To raise awareness of the growing list of non-platinum-based chemo- and immunotherapeutic agents that have been associated with ototoxicity and to introduce the possible mechanism of ototoxicity of these agents. DATA SOURCES PubMed, Embase, and Web of Science. REVIEW METHODS A systematic review was performed following the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses). PubMed, Embase, and Web of Science databases were searched for published reports of ototoxicity from non-platinum-based chemo- and immunotherapeutic agents in adult and pediatric patients. Therapies that utilized any platinum-based agent were excluded. CONCLUSIONS Ototoxicity from non-platinum-based chemo- and immunotherapies is an evolving problem. There were 54 reports-39 case reports and 15 cohort studies-documenting ototoxicity from 7 agents/combination therapies. Of these reports, 37 (69%) were published within the last 15 years (after 2005). No recovery of hearing was documented in 21 of 56 cases (38%). Pretreatment audiograms were uncommon (19/54 studies, 35%), despite documented ototoxic associations. IMPLICATIONS FOR PRACTICE There is a growing number of novel, ototoxic, non-platinum-based chemo- and immunotherapeutic agents with various potential mechanisms of action. Otolaryngologists will need to prioritize awareness of these agents. This growing list of agents, many of which have reversible effects, suggest a need for standardized ototoxicity monitor protocols so that appropriate and timely management options can be implemented.
Collapse
Affiliation(s)
- James G Naples
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Wyatt Rice-Narusch
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Sean Holmes
- Louisiana State University-Shreveport, Shreveport, Louisiana, USA
| | - Daqing Li
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scharukh Jalisi
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Mechanisms underlying immune-related adverse events during checkpoint immunotherapy. Clin Sci (Lond) 2022; 136:771-785. [PMID: 35621125 DOI: 10.1042/cs20210042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint (IC) proteins are some of the most important factors that tumor cells hijack to escape immune surveillance, and inhibiting ICs to enhance or relieve antitumor immunity has been proven efficient in tumor treatment. Immune checkpoint blockade (ICB) agents such as antibodies blocking programmed death (PD) 1, PD-1 ligand (PD-L) 1, and cytotoxic T lymphocyte-associated antigen (CTLA)-4 have been approved by the U.S. Food and Drug Administration (FDA) to treat several types of cancers. Although ICB agents have shown outstanding clinical success, and their application has continued to expand to additional tumor types in the past decade, immune-related adverse events (irAEs) have been observed in a wide range of patients who receive ICB treatment. Numerous studies have focused on the clinical manifestations and pathology of ICB-related irAEs, but the detailed mechanisms underlying irAEs remain largely unknown. Owing to the wide expression of IC molecules on distinct immune cell subpopulations and the fact that ICB agents generally affect IC-expressing cells, the influences of ICB agents on immune cells in irAEs need to be determined. Here, we discuss the expression and functions of IC proteins on distinct immune cells and the potential mechanism(s) related to ICB-targeted immune cell subsets in irAEs.
Collapse
|
4
|
Al-Zubidi N, Page JC, Gombos DS, Srivastava A, Appelbaum E, Gidley PW, Chambers MS, Nader ME. Immune-Related Oral, Otologic, and Ocular Adverse Events. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:399-416. [PMID: 34972977 DOI: 10.1007/978-3-030-79308-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Emerging immunotherapeutic agents, including immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed cell death protein ligand 1 (PD-L1), have revolutionized cancer treatment. The first immune checkpoint inhibitor (ICI) ipilimumab, an anti-CTLA-4, was approved in 2011. Since then, the US Food and Drug Administration (FDA) has approved more than half a dozen immune checkpoint inhibitors to treat various malignancies. These agents are part of a broader class of chemotherapy agents termed immunotherapy, which selectively target different steps in the immune response cascade to upregulate the body's normal response to cancer. While the effects of traditional chemotherapy are well known, the toxicity profile of emerging immune therapies is not fully elucidated. They have been associated with atypical side effects labeled collectively as immune-related adverse events (irAEs).
Collapse
Affiliation(s)
- Nagham Al-Zubidi
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Cody Page
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan S Gombos
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akanksha Srivastava
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Appelbaum
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul W Gidley
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark S Chambers
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marc-Elie Nader
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Szepesy J, Humli V, Farkas J, Miklya I, Tímár J, Tábi T, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Vizi ES, Zelles T. Chronic Oral Selegiline Treatment Mitigates Age-Related Hearing Loss in BALB/c Mice. Int J Mol Sci 2021; 22:2853. [PMID: 33799684 PMCID: PMC7999597 DOI: 10.3390/ijms22062853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.
Collapse
MESH Headings
- Administration, Oral
- Aging/physiology
- Animals
- Antiparkinson Agents/administration & dosage
- Antiparkinson Agents/pharmacology
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Selegiline/administration & dosage
- Selegiline/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Mice
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Viktória Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Júlia Tímár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, H-1089 Budapest, Hungary;
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - Elek Sylvester Vizi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| |
Collapse
|