1
|
Pedace L, Pizzi S, Abballe L, Vinci M, Antonacci C, Patrizi S, Nardini C, Del Bufalo F, Rossi S, Pericoli G, Gianno F, Besharat ZM, Tiberi L, Mastronuzzi A, Ferretti E, Tartaglia M, Locatelli F, Ciolfi A, Miele E. Evaluating cell culture reliability in pediatric brain tumor primary cells through DNA methylation profiling. NPJ Precis Oncol 2024; 8:92. [PMID: 38637626 PMCID: PMC11026496 DOI: 10.1038/s41698-024-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles from the parental ones. All divergent cells clustered together acquiring a common deregulated epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated genes shared among unfaithful cells converging on response to growth factors and migration pathways, such as signaling cascade activation, tissue organization, and cellular migration. In conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of pBT-cells from parental tumors.
Collapse
Affiliation(s)
- Lucia Pedace
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Luana Abballe
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Celeste Antonacci
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Patrizi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Nardini
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pericoli
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | | | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Franco Locatelli
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Evelina Miele
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Pericoli G, Galardi A, Paolini A, Petrilli LL, Pepe G, Palma A, Colletti M, Ferretti R, Giorda E, Levi Mortera S, Burford A, Carai A, Mastronuzzi A, Mackay A, Putignani L, Jones C, Pascucci L, Peinado H, Helmer-Citterich M, de Billy E, Masotti A, Locatelli F, Di Giannatale A, Vinci M. Inhibition of exosome biogenesis affects cell motility in heterogeneous sub-populations of paediatric-type diffuse high-grade gliomas. Cell Biosci 2023; 13:207. [PMID: 37957701 PMCID: PMC10641969 DOI: 10.1186/s13578-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.
Collapse
Affiliation(s)
- Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Roberta Ferretti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Ezio Giorda
- Core Facilities research laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Burford
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Andrea Carai
- Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alan Mackay
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Lorenza Putignani
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chris Jones
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Emmanuel de Billy
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Petrilli LL, Fuoco C, Palma A, Pasquini L, Pericoli G, Grabovska Y, Mackay A, Rossi S, Carcaboso AM, Carai A, Mastronuzzi A, Jones C, Cesareni G, Locatelli F, Vinci M. Inter and intra-tumor heterogeneity of paediatric type diffuse high-grade gliomas revealed by single-cell mass cytometry. Front Oncol 2022; 12:1016343. [PMID: 36568177 PMCID: PMC9773089 DOI: 10.3389/fonc.2022.1016343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Paediatric-type diffuse high-grade gliomas (PDHGG) are aggressive tumors affecting children and young adults, with no effective treatment. These highly heterogeneous malignancies arise in different sites of the Central Nervous System (CNS), carrying distinctive molecular alterations and clinical outcomes (inter-tumor heterogeneity). Moreover, deep cellular and molecular profiling studies highlighted the coexistence of genetically and phenotypically different subpopulations within the same tumor mass (intra-tumor heterogeneity). Despite the recent advances made in the field, the marked heterogeneity of PDHGGs still impedes the development of effective targeted therapies and the identification of suitable biomarkers. In order to fill the existing gap, we used mass cytometry to dissect PDHGG inter- and intra-heterogeneity. This is one of the most advanced technologies of the "-omics" era that, using antibodies conjugated to heavy metals, allows the simultaneous measurement of more than 40 markers at single-cell level. To this end, we analyzed eight PDHGG patient-derived cell lines from different locational and molecular subgroups. By using a panel of 15 antibodies, directly conjugated to metals or specifically customized to detect important histone variants, significant differences were highlighted in the expression of the considered antigens. The single-cell multiparametric approach realized has deepened our understanding of PDHGG, confirming a high degree of intra- and inter-tumoral heterogeneity and identifying some antigens that could represent useful biomarkers for the specific PDHGG locational or molecular subgroups.
Collapse
Affiliation(s)
- Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Yura Grabovska
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | - Sabrina Rossi
- Department of Laboratories-Pathology Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Angel M. Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital -IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Neuro-oncology Unit, Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, United Kingdom
| | - Gianni Cesareni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital– IRCCS, Rome, Italy
| |
Collapse
|
4
|
Del Baldo G, Carai A, Abbas R, Cacchione A, Vinci M, Di Ruscio V, Colafati GS, Rossi S, Diomedi Camassei F, Maestro N, Temelso S, Pericoli G, De Billy E, Giovannoni I, Carboni A, Rinelli M, Agolini E, Mackay A, Jones C, Chiesa S, Balducci M, Locatelli F, Mastronuzzi A. Targeted therapy for pediatric diffuse intrinsic pontine glioma: a single-center experience. Ther Adv Med Oncol 2022; 14:17588359221113693. [PMID: 36090803 PMCID: PMC9459464 DOI: 10.1177/17588359221113693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a fatal disease with a median
overall survival (OS) of less than 12 months after diagnosis. Radiotherapy
(RT) still remains the mainstay treatment. Several other therapeutic
strategies have been attempted in the last years without a significant
effect on OS. Although radiological imaging is the gold standard for DIPG
diagnosis, the urgent need to improve the survival has led to the
reconsideration of biopsy with the aim to better understand the molecular
profile of DIPG and support personalized treatment. Methods: In this study, we present a single-center experience in treating DIPG
patients at disease progression combining targeted therapies with standard
of care. Biopsy was proposed to all patients at diagnosis or disease
progression. First-line treatment included RT and nimotuzumab/vinorelbine or
temozolomide. Immunohistochemistry-targeted research included study of
mTOR/p-mTOR pathway and BRAFv600E. Molecular analyses
included polymerase chain reaction, followed by Sanger sequences and/or
next-generation sequencing. Results: Based on the molecular profile, targeted therapy was administered in 9 out of
25 patients, while the remaining 16 patients were treated with standard of
care. Personalized treatment included inhibition of the PI3K/AKT/mTOR
pathway (5/9), PI3K/AKT/mTOR pathway and BRAFv600E (1/9),
ACVR1 (2/9) and PDGFRA (1/9); no
severe side effects were reported during treatment. Response to treatment
was evaluated according to Response Assessment in Pediatric Neuro-Oncology
criteria, and the overall response rate within the cohort was 66%. Patients
treated with targeted therapies were compared with the control cohort of 16
patients. Clinical and pathological characteristics of the two cohorts were
homogeneous. Median OS in the personalized treatment and control cohort was
20.26 and 14.18 months, respectively (p = 0.032). In our
experience, the treatment associated with the best OS was everolimus. Conclusion: Despite the small simple size of our study, our data suggest a prognostic
advantage and a safe profile of targeted therapies in DIPG patients, and we
strongly advocate to reconsider the role of biopsy for these patients.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Rachid Abbas
- CESP, INSERM, Université Paris Sud, Villejuif, France
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mara Vinci
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Nicola Maestro
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Giulia Pericoli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel De Billy
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Carboni
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Silvia Chiesa
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Mario Balducci
- Department of Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli," Catholic University of Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Tari H, Kessler K, Trahearn N, Werner B, Vinci M, Jones C, Sottoriva A. Quantification of spatial subclonal interactions enhancing the invasive phenotype of pediatric glioma. Cell Rep 2022; 40:111283. [PMID: 36044867 PMCID: PMC9449134 DOI: 10.1016/j.celrep.2022.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/21/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diffuse midline gliomas (DMGs) are highly aggressive, incurable childhood brain tumors. They present a clinical challenge due to many factors, including heterogeneity and diffuse infiltration, complicating disease management. Recent studies have described the existence of subclonal populations that may co-operate to drive pro-tumorigenic processes such as cellular invasion. However, a precise quantification of subclonal interactions is lacking, a problem that extends to other cancers. In this study, we combine spatial computational modeling of cellular interactions during invasion with co-evolution experiments of clonally disassembled patient-derived DMG cells. We design a Bayesian inference framework to quantify spatial subclonal interactions between molecular and phenotypically distinct lineages with different patterns of invasion. We show how this approach could discriminate genuine interactions, where one clone enhanced the invasive phenotype of another, from those apparently only due to the complex dynamics of spatially restricted growth. This study provides a framework for the quantification of subclonal interactions in DMG.
Collapse
Affiliation(s)
- Haider Tari
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Glioma Team, The Institute of Cancer Research, London, UK
| | - Ketty Kessler
- Glioma Team, The Institute of Cancer Research, London, UK
| | - Nick Trahearn
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Benjamin Werner
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Vinci
- Department of Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chris Jones
- Glioma Team, The Institute of Cancer Research, London, UK.
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Research Centre for Computational Biology, Human Technopole, Milan, Italy.
| |
Collapse
|
6
|
Pampaloni F. Multi-Modal and Molecular Imaging of Cellular Microenvironment and Tissue Development. Int J Mol Sci 2022; 23:ijms23137113. [PMID: 35806117 PMCID: PMC9266741 DOI: 10.3390/ijms23137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue Str. 15, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Izquierdo E, Carvalho DM, Mackay A, Temelso S, Boult JK, Pericoli G, Fernandez E, Das M, Molinari V, Grabovska Y, Rogers RF, Ajmone-Cat MA, Proszek PZ, Stubbs M, Depani S, O'Hare P, Yu L, Roumelioti G, Choudhary JS, Clarke M, Fairchild AR, Jacques TS, Grundy RG, Howell L, Picton S, Adamski J, Wilson S, Gray JC, Zebian B, Marshall LV, Carceller F, Grill J, Vinci M, Robinson SP, Hubank M, Hargrave D, Jones C. DIPG Harbors Alterations Targetable by MEK Inhibitors, with Acquired Resistance Mechanisms Overcome by Combinatorial Inhibition. Cancer Discov 2022; 12:712-729. [PMID: 34737188 PMCID: PMC7612484 DOI: 10.1158/2159-8290.cd-20-0930] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/04/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling and drug screening in newly established patient-derived models in vitro and in vivo. We identified in vitro sensitivity to MEK inhibitors in DIPGs harboring MAPK pathway alterations, but treatment of patient-derived xenograft models and a patient at relapse failed to elicit a significant response. We generated trametinib-resistant clones in a BRAFG469V model through continuous drug exposure and identified acquired mutations in MEK1/2 with sustained pathway upregulation. These cells showed hallmarks of mesenchymal transition and expression signatures overlapping with inherently trametinib-insensitive patient-derived cells, predicting sensitivity to dasatinib. Combined trametinib and dasatinib showed highly synergistic effects in vitro and on ex vivo brain slices. We highlight the MAPK pathway as a therapeutic target in DIPG and show the importance of parallel resistance modeling and combinatorial treatments for meaningful clinical translation. SIGNIFICANCE We report alterations in the MAPK pathway in DIPGs to confer initial sensitivity to targeted MEK inhibition. We further identify for the first time the mechanism of resistance to single-agent targeted therapy in these tumors and suggest a novel combinatorial treatment strategy to overcome it in the clinic. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Elisa Izquierdo
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Diana M. Carvalho
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Alan Mackay
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Sara Temelso
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Jessica K.R. Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Giulia Pericoli
- Department of Haematology/Oncology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Elisabet Fernandez
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Molina Das
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Valeria Molinari
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Yura Grabovska
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Rebecca F. Rogers
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | - Paula Z. Proszek
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Mark Stubbs
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Sarita Depani
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patricia O'Hare
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Lu Yu
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Georgia Roumelioti
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Jyoti S. Choudhary
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Matthew Clarke
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Amy R. Fairchild
- UCL Great Ormond Street Institute for Child Health, London, United Kingdom
| | - Thomas S. Jacques
- UCL Great Ormond Street Institute for Child Health, London, United Kingdom
| | - Richard G. Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Lisa Howell
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Susan Picton
- Leeds Children's Hospital, Leeds, United Kingdom
| | - Jenny Adamski
- Birmingham Women's and Children's Hospital, Birmingham, United Kingdom
| | - Shaun Wilson
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Juliet C. Gray
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, Kings College Hospital NHS Trust, London, United Kingdom
| | - Lynley V. Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit U891, Team “Genomics and Oncogenesis of Pediatric Brain Tumors,” Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Maria Vinci
- Department of Haematology/Oncology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Simon P. Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Michael Hubank
- Molecular Diagnostics, Royal Marsden Hospital NHS Trust, Sutton, United Kingdom
| | - Darren Hargrave
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute for Child Health, London, United Kingdom
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Tumor cell invasion into Matrigel: optimized protocol for RNA extraction. Biotechniques 2021; 70:327-335. [PMID: 33969693 DOI: 10.2144/btn-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
3D models are increasingly used to study mechanisms driving tumor progression and mimicking in vitro processes such as invasion and migration. However, there is a need to establish more protocols based on 3D culture systems that allow for downstream molecular biology investigations. Materials & methods: Here we present a method for optimal RNA extraction from highly aggressive primary glioma cells invading into Matrigel. The method has been established by comparing previously reported protocols, available commercial kits and optimizing specific steps for matrix dissociation, RNA separation and purification. Results and conclusion: The protocol allows RNA extraction from cells embedded into Matrigel, with optimal yield, purity and integrity suitable for subsequent sequencing analysis of both high and low molecular weight RNA.
Collapse
|