1
|
Gentili HG, Pignataro MF, Olmos J, Pavan MF, Ibañez LI, Santos J, Velazquez Duarte F. CRISPR/Cas9-based edition of frataxin gene in Dictyostelium discoideum. Biochem J 2023; 480:1533-1551. [PMID: 37721041 DOI: 10.1042/bcj20230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
In this paper, we describe the development of a Dictyostelium discoideum strain deficient in frataxin protein (FXN). We investigated the conservation of function between humans and D. discoideum and showed that DdFXN can substitute the human version in the interaction and activation of the Fe-S assembly supercomplex. We edited the D. discoideum fxn locus and isolated a defective mutant, clone 8, which presents landmarks of frataxin deficiency, such as a decrease in Fe-S cluster-dependent enzymatic functions, growth rate reduction, and increased sensitivity to oxidative stress. In addition, the multicellular development is affected as well as growing on bacterial lawn. We also assessed the rescuing capacity of DdFXN-G122V, a version that mimics a human variant present in some FA patients. While the expression of DdFXN-G122V rescues growth and enzymatic activity defects, as DdFXN does, multicellular development defects were only partially rescued. The results of the study suggest that this new D. discoideum strain offers a wide range of possibilities to easily explore diverse FA FXN variants. This can facilitate the development of straightforward drug screenings to look for new therapeutic strategies.
Collapse
Affiliation(s)
- Hernan G Gentili
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pignataro
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Justo Olmos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Lorena Itatí Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET, FCEN, UBA, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Francisco Velazquez Duarte
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
2
|
Payne RM. Cardiovascular Research in Friedreich Ataxia: Unmet Needs and Opportunities. JACC Basic Transl Sci 2022; 7:1267-1283. [PMID: 36644283 PMCID: PMC9831864 DOI: 10.1016/j.jacbts.2022.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
Friedreich Ataxia (FRDA) is an autosomal recessive disease in which a mitochondrial protein, frataxin, is severely decreased in its expression. In addition to progressive ataxia, patients with FRDA often develop a cardiomyopathy that can be hypertrophic. This cardiomyopathy is unlike the sarcomeric hypertrophic cardiomyopathies in that the hypertrophy is associated with massive mitochondrial proliferation within the cardiomyocyte rather than contractile protein overexpression. This is associated with atrial arrhythmias, apoptosis, and fibrosis over time, and patients often develop heart failure leading to premature death. The differences between this mitochondrial cardiomyopathy and the more common contractile protein hypertrophic cardiomyopathies can be a source of misunderstanding in the management of these patients. Although imaging studies have revealed much about the structure and function of the heart in this disease, we still lack an understanding of many important clinical and fundamental molecular events that determine outcome of the heart in FRDA. This review will describe the current basic and clinical understanding of the FRDA heart, and most importantly, identify major gaps in our knowledge that represent new directions and opportunities for research.
Collapse
Affiliation(s)
- R. Mark Payne
- Address for correspondence: Dr R. Mark Payne, Division of Pediatric Cardiology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, R4 302b, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
3
|
Williams FN, Scaglione KM. Insights on Microsatellite Characteristics, Evolution, and Function From the Social Amoeba Dictyostelium discoideum. Front Neurosci 2022; 16:886837. [PMID: 35769695 PMCID: PMC9234386 DOI: 10.3389/fnins.2022.886837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Microsatellites are repetitive sequences commonly found in the genomes of higher organisms. These repetitive sequences are prone to expansion or contraction, and when microsatellite expansion occurs in the regulatory or coding regions of genes this can result in a number of diseases including many neurodegenerative diseases. Unlike in humans and other organisms, the social amoeba Dictyostelium discoideum contains an unusually high number of microsatellites. Intriguingly, many of these microsatellites fall within the coding region of genes, resulting in nearly 10,000 homopolymeric repeat proteins within the Dictyostelium proteome. Surprisingly, among the most common of these repeats are polyglutamine repeats, a type of repeat that causes a class of nine neurodegenerative diseases in humans. In this minireview, we summarize what is currently known about homopolymeric repeats and microsatellites in Dictyostelium discoideum and discuss the potential utility of Dictyostelium for identifying novel mechanisms that utilize and regulate regions of repetitive DNA.
Collapse
Affiliation(s)
- Felicia N. Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
- *Correspondence: K. Matthew Scaglione,
| |
Collapse
|