1
|
Della Pelle G, Bozic T, Vukomanović M, Sersa G, Markelc B, Kostevšek N. Efficient siRNA delivery to murine melanoma cells via a novel genipin-based nano-polymer. NANOSCALE ADVANCES 2024; 6:4704-4723. [PMID: 39263399 PMCID: PMC11386170 DOI: 10.1039/d4na00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Small-interfering RNAs (siRNAs) are therapeutic nucleic acids, often delivered via cationic polymers, liposomes, or extracellular vesicles, each method with its limitations. Genipin, a natural crosslinker for primary amines, was explored for siRNA delivery scaffolds. Spermine/genipin-based GxS5 polymers were synthesized, showing slightly positive ζ potential at neutral pH and intrinsic fluorescence. We then tuned their polymerization adding glycine to the reaction batch, from 1 to 10 molar ratio with genipin, therefore conferring them a "zwitterionic" character. GxS5 efficiently internalized into B16F10 murine melanoma cells, and exhibited strong siRNA-complexing ability and they were able to elicit up to 60% of gene knock-down without any toxicity. This highlights GxS5's potential as a safe, replicable, and tunable platform for therapeutic nucleic acid delivery, suggesting broader applications. This innovative approach not only sheds light on the intricate genipin reaction mechanism but also underscores the importance of fine-tuning nanoparticle properties for effective siRNA delivery. GxS5's success in mitigating cytotoxicity while maintaining delivery efficacy signifies a promising step towards safer and more efficient nucleic acid therapeutics.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute 1000 Ljubljana Slovenia
- Jožef Stefan International Postgraduate School 1000 Ljubljana Slovenia
| | - Tim Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana 1000 Ljubljana Slovenia
| | - Marija Vukomanović
- Advanced Materials Department, Jožef Stefan Institute 1000 Ljubljana Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana 1000 Ljubljana Slovenia
- Faculty of Health Sciences, University of Ljubljana Zdravstvena pot 5 SI-1000 Ljubljana Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana 1000 Ljubljana Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute 1000 Ljubljana Slovenia
- Jožef Stefan International Postgraduate School 1000 Ljubljana Slovenia
| |
Collapse
|
2
|
Aye KC, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Development and characterization of curcumin nanosuspension-embedded genipin-crosslinked chitosan/polyvinylpyrrolidone hydrogel patch for effective wound healing. Int J Biol Macromol 2024; 274:133519. [PMID: 38960235 DOI: 10.1016/j.ijbiomac.2024.133519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.
Collapse
Affiliation(s)
- Khin Cho Aye
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
3
|
Natallia L, Dama A, Gorica E, Darya K, Peña-Corona SI, Cortés H, Santini A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J. Genipin's potential as an anti-cancer agent: from phytochemical origins to clinical prospects. Med Oncol 2024; 41:186. [PMID: 38918260 DOI: 10.1007/s12032-024-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.
Collapse
Affiliation(s)
- Lapava Natallia
- Medicine Standardization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus.
| | - Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Zogu I Blvd., 1001, Tirana, Albania
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Zogu I Blvd., 1001, Tirana, Albania
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, 8952, Schlieren, Zürich, Switzerland
| | - Karaliova Darya
- Medicine Standardization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Pratiwi RD, El Muttaqien S, Gustini N, Difa NS, Syahputra G, Rosyidah A. Eco-friendly synthesis of chitosan and its medical application: from chitin extraction to nanoparticle preparation. ADMET AND DMPK 2023; 11:435-455. [PMID: 37937250 PMCID: PMC10626508 DOI: 10.5599/admet.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Indexed: 11/09/2023] Open
Abstract
Background and Purpose Chitosan, a chitin deacetylation product, has been applied in nanoparticle or nano-chitosan for medical applications. However, the chitin extraction from crustacean shells and other natural resources, chitin deacetylation, and crosslinking of the chitosan forming the nano-chitosan mostly involve hazardous chemical and physical processes. The risks of these processes to human health and the environment attract the attention of scientists to develop safer and greener techniques. This review aims to describe the progress of harmless chitosan synthesis. Experimental Approach All strongly related publications to each section, which were found on scientific search engines (Google Scholar, Scopus, and Pubmed), were studied, selected, and then used as references in writing this review. No limitation for the publication year was applied. The publications were searched from April 2022 - June 2023. Key Results Nano-chitosan could be synthesized in harmless techniques, including the preparation of the chitosan raw materials and crosslinking the chitosan polymer. Enzymatic processes in shell deproteination in the chitin extraction and deacetylation are preferable to reduce the negative effects of conventional chemical-physical processes. Mild alkalines and deep eutectic solvents also provide similar benefits. In the nano-chitosan synthesis, naturally derived compounds (carrageenan, genipin, and valinin) show potency as safer crosslinkers, besides tripolyphosphate, the most common safe crosslinker. Conclusion A list of eco-friendly and safer processes in the synthesis of nano-chitosan has been reported in recent years. These findings are suggested for the nano-chitosan synthesis on an industrial scale in the near future.
Collapse
Affiliation(s)
- Riyona Desvy Pratiwi
- Research Center for Vaccine and Drug, Organization Research of Health, The National Research and Innovation Agency, Jalan Raya Bogor Km 46 Cibinong, Bogor 16911, West Java, Indonesia
| | | | | | | | | | | |
Collapse
|
5
|
Pizzolitto C, Scognamiglio F, Sacco P, Lipari S, Romano M, Donati I, Marsich E. Immediate stress dissipation in dual cross-link hydrogels controls osteogenic commitment of mesenchymal stem cells. Carbohydr Polym 2023; 302:120369. [PMID: 36604049 DOI: 10.1016/j.carbpol.2022.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
In vitro studies of mesenchymal stem cells (MSCs) differentiation have been predominantly performed with non-physiologically elastic materials. Here we report the effect of different viscoplastic ECM mimics on the osteogenic engagement of MSCs in 2D. We have developed soft hydrogels, composed of a lactose-modified chitosan, using a combination of permanent and temporary cross-links. The presence of temporary cross-links has a minor effect on the shear modulus of the hydrogels, but causes an immediate relaxation (dissipation) of the applied stress. This material property leads to early osteogenic commitment of MSCs, as evidenced by gene expression of runt-related transcription factor 2 (RUNX2), type 1 collagen (COL1A1), osteocalcin (OCN), alkaline phosphatase enzyme activity (ALP) and calcium deposit formation. In contrast, cells cultured on purely elastic hydrogels with only permanent cross-link begin to differentiate only after a longer period of time, indicating a dissipation-mediated mechano-sensing in the osteogenic commitment of MSCs.
Collapse
Affiliation(s)
- Chiara Pizzolitto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Francesca Scognamiglio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Pasquale Sacco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy; Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; AREA Science Park, loc. Padriciano 99, I-34149 Trieste, Italy.
| | - Sara Lipari
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| |
Collapse
|
6
|
Calabretta MM, Gregucci D, Desiderio R, Michelini E. Colorimetric Paper Sensor for Food Spoilage Based on Biogenic Amine Monitoring. BIOSENSORS 2023; 13:126. [PMID: 36671961 PMCID: PMC9855854 DOI: 10.3390/bios13010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/24/2023]
Abstract
Biogenic amines (BAs), nitrogenous molecules usually present in different foods, can be considered an indicator of freshness and food quality since their amount increases during food spoilage. Their detection, possibly in real time via the use of smart packaging, is therefore of crucial importance to ensure food safety and to fulfill consumers' demand. To this end, colorimetric sensors are considered one of the most feasible solutions. Here, we report a user-friendly colorimetric sensing paper able to detect BAs via the naked eye. The sensing molecule is the aglycone genipin, a natural cross-linking agent extracted from gardenia fruit, able to bind BAs producing water-soluble blue pigments. The paper sensor was applied to chicken meat quality monitoring and a quantitative analysis was performed with image acquisition via a smartphone camera, achieving a limit of detection equivalent to 0.1 mM of putrescine. The suitability of the BA sensing paper was assessed by integrating the sensor into smart packaging and analyzing commercial chicken meat samples stored at different temperatures; the results of the sensor paralleled the "best before date" indicated on the label, confirming the potential applicability of the sensor as a smart label.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, 40138 Bologna, Italy
| | - Denise Gregucci
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, 40138 Bologna, Italy
| | - Riccardo Desiderio
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, 40138 Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Pizzolitto C, Esposito F, Sacco P, Marsich E, Gargiulo V, Bedini E, Donati I. Sulfated lactose-modified chitosan. A novel synthetic glycosaminoglycan-like polysaccharide inducing chondrocyte aggregation. Carbohydr Polym 2022; 288:119379. [DOI: 10.1016/j.carbpol.2022.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
|
8
|
Li SM, Chiang CY, Zeng WZ, Chung CY, Tseng CC, Hu YP, Lin YC, Huang GJ, Arai I, Lee DY, Tsai SE, Fuh Wong F. Bioactivity Study of Tricyclic and Tetracyclic Genipin Derivatives as Anti-inflammatory Agents. Bioorg Chem 2022; 126:105881. [DOI: 10.1016/j.bioorg.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
|
9
|
Contributions of Women in Recent Research on Biopolymer Science. Polymers (Basel) 2022; 14:polym14071420. [PMID: 35406293 PMCID: PMC9003506 DOI: 10.3390/polym14071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Nowadays, biopolymers are playing a fundamental role in our society because of the environmental issues and concerns associated with synthetic polymers. The aim of this Special Issue entitled ‘Women in Polymer Science and Technology: Biopolymers’ is highlighting the work designed and developed by women on biopolymer science and technology. In this context, this short review aims to provide an introduction to this Special Issue by highlighting some recent contributions of women around the world on the particular topic of biopolymer science and technology during the last 20 years. In the first place, it highlights a selection of important works performed on a number of well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly, it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their synthesis and in their degradation. These contributions will be paving the way for the next generation of female and male scientists on this topic.
Collapse
|
10
|
Mio L, Sacco P, Donati I. Influence of Temperature and Polymer Concentration on the Nonlinear Response of Highly Acetylated Chitosan-Genipin Hydrogels. Gels 2022; 8:194. [PMID: 35323307 PMCID: PMC8955893 DOI: 10.3390/gels8030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Strain hardening, i.e., the nonlinear elastic response of materials under load, is a physiological response of biological tissues to mechanical stimulation. It has recently been shown to play a central role in regulating cell fate. In this paper, we investigate the effect of temperature and polymer concentrations on the strain hardening of covalent hydrogels composed of pH-neutral soluble chitosans crosslinked with genipin. A series of highly acetylated chitosans with a fraction of acetylated units, FA, in the range of 0.4-0.6 was synthesized by the homogeneous re-N-acetylation of a partially acetylated chitosan or the heterogeneous deacetylation of chitin. A chitosan sample with an FA = 0.44 was used to prepare hydrogels with genipin as a crosslinker at a neutral pH. Time and frequency sweep experiments were then performed to obtain information on the gelling kinetics and mechanical response of the resulting hydrogels under small amplitude oscillatory shear. While the shear modulus depends on the chitosan concentration and is almost independent of the gel temperature, we show that the extent of hardening can be modulated when the gelling temperature is varied and is almost independent of the experimental conditions used to build the hydrogels (ex situ or in situ gelation). The overall effect is attributed to a subtle balance between the physical (weak) entanglements and covalent (strong) crosslinks that determine the mechanical response of highly acetylated chitosan hydrogels at large deformations.
Collapse
Affiliation(s)
- Lorenzo Mio
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (L.M.); (P.S.)
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (L.M.); (P.S.)
- AREA Science Park, Loc. Padriciano 99, I-34149 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (L.M.); (P.S.)
| |
Collapse
|
11
|
Synthesis of Tricyclic Methyl Cyclopentapyridopyrimidin‐6‐carboxylates and Cyclopentaimidazopyridin‐6‐carboxylates from Genipin. ChemistrySelect 2022. [DOI: 10.1002/slct.202104327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Poly (l-lactic acid) membrane crosslinked with Genipin for guided bone regeneration. Int J Biol Macromol 2021; 191:1228-1239. [PMID: 34619279 DOI: 10.1016/j.ijbiomac.2021.09.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
In this study, we chemically modified poly(L-lactic acid) (PLLA) with functional amine groups and fabricated a PLLA membrane crosslinked with genipin as a biomembrane for inducing guided bone regeneration (GBR). The mechanical strength of the PLLA-amine membrane was improved by crosslinking with genipin compared to pure PLLA membrane. The surface of the PLLA-amine membrane crosslinked with genipin had many more uniform pores. Attachment and proliferation of MC3T3-E1 cells were increased and improved on the PLLA-amine membrane crosslinked with genipin. In an in vitro osteogenesis study, MC3T3-E1 cells on the PLLA membrane showed higher alkaline phosphatase (ALP) activity and calcification ability evaluated by alizarin red S staining than those on the pure PLLA membrane. When a skull defect hole of a rat was covered with the PLLA-amine membrane crosslinked with genipin, vigorous new bone regeneration determined by computed tomography at 8 weeks post operation was superior to that when the skull defect was covered with the pure PLLA membrane. Taken together, these results demonstrate that the PLLA-amine membrane crosslinked with genipin has a promising therapeutic application to GBR as a barrier membrane for covering the defect site.
Collapse
|
13
|
Furlani F, Marfoglia A, Marsich E, Donati I, Sacco P. Strain Hardening in Highly Acetylated Chitosan Gels. Biomacromolecules 2021; 22:2902-2909. [PMID: 34161074 DOI: 10.1021/acs.biomac.1c00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strain hardening has recently emerged as a near-universal response of biological tissues to mechanical stimulation as well as a powerful regulator of cell fate. Understanding the mechanistic basis for this nonlinear elasticity is crucial for developing bioinspired materials that mimic extracellular matrix mechanics. Here, we show that covalent networks built from highly acetylated chitosans exhibit strain hardening at physiological pH and osmolarity. While varying the chitosan physical-chemical composition and network connectivity, we provide evidence that temporary nodes arising from the entangling of chains between stable cross-links are at the root of nonlinear elasticity. The contour length (Lc) of the said chains revealed that the larger the chain length between the cross-links, the greater is the entanglement over disentanglement upon network stretching. To this end, we calculated that the minimum number of Khun's segments in Lc that contributes to the onset of strain hardening is 15. Furthermore, we identified a relationship between critical strain marking nonlinear elasticity and the network connectivity, being similar to that found for the cytoskeletal collagen matrix, indicating the potential use of semiflexible (neutral pH-soluble) chitosans in assembling extracellular matrix mimics.
Collapse
Affiliation(s)
- Franco Furlani
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, Trieste I-34127, Italy
| | - Andrea Marfoglia
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, Trieste I-34127, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza Dell'Ospitale 1, Trieste I-34129, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, Trieste I-34127, Italy
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, Trieste I-34127, Italy
| |
Collapse
|
14
|
García-García ÓD, El Soury M, González-Quevedo D, Sánchez-Porras D, Chato-Astrain J, Campos F, Carriel V. Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves. Int J Mol Sci 2021; 22:ijms22020674. [PMID: 33445493 PMCID: PMC7826762 DOI: 10.3390/ijms22020674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.
Collapse
Affiliation(s)
- Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18012 Granada, Spain
| | - Marwa El Soury
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Orbassano, Italy
| | - David González-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Correspondence: (F.C.); (V.C.)
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Correspondence: (F.C.); (V.C.)
| |
Collapse
|