1
|
Siddiqui MA, Baskın E, Gülleroğlu K, Şafak A, Karakaya E, Haberal M. Advanced Prediction of Glomerular Filtration Rate After Kidney Transplantation Using Gradient Boosting Techniques. EXP CLIN TRANSPLANT 2024; 22:78-82. [PMID: 39498925 DOI: 10.6002/ect.pedsymp2024.o18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
OBJECTIVES Clinicians often face uncertainty when interpreting whether a decline in estimated glomerular filtration rate is within the patient's expected range of fluctuation or if the decline signals a substantial deviation. Thus, accurate predictions of glomerular filtration rate can be an early warning system, prompting timely interventions, such as biopsies to preclude early graft rejection and adjustments in immunosuppression. Traditional models, encompassing linear and conventional methods, typically struggle with variabilities and complexities in posttransplant data. MATERIALS AND METHODS We evaluated the efficacy of a gradient boosting model in predicting posttransplant glomerular filtration rate, to potentially enhance accuracy over traditional prediction approaches. Our patient dataset included 68 pediatric patients aged 1 to 18 years who underwent kidney transplant between 2017 and 2023 at Baskent University Hospital (Ankara, Turkey). The dataset comprised 2285 glomerular filtration rate measurements, along with patient demographics and transplant-related data. For our model, we included "days to transplant" (glomerular filtration rate values pretransplant), "days from transplant" (glomerular filtration rate values up to 7 days posttransplant), patient age, sex, and donor types. We divided the dataset into a training set (70%) and a test set (30%). To evaluate model performance, we used mean absolute error and root mean squared error, with a focus on the accuracy of glomerular filtration rate predictions at various posttransplant stages. RESULTS In the training set, the gradient boosting model demonstrated a significant improvement in prediction accuracy, achieving an mean absolute error of ~5.64 mL/min/1.73 m². CONCLUSIONS Our model underscored the promise of advanced machine learning techniques in refining prediction of glomerular filtration rate after kidney transplant. With its augmented precision, the model can support clinicians in making informed decisions regarding early biopsies and interventions, thus highlighting the vital role of sophisticated analytical methods in medical prognosis and the monitoring of pediatric patient care.
Collapse
Affiliation(s)
- Meraj Alam Siddiqui
- From the Department of Pediatrics, Başkent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
2
|
Janfeshan S, Afshari A, Yaghobi R, Roozbeh J. Urinary CXCL-10, a prognostic biomarker for kidney graft injuries: a systematic review and meta-analysis. BMC Nephrol 2024; 25:292. [PMID: 39232662 PMCID: PMC11375915 DOI: 10.1186/s12882-024-03728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The challenges of long-term graft survival and the side effects of current immunosuppressive therapies in kidney transplantation highlight the need for improved drugs with fewer adverse effects. Biomarkers play a crucial role in quickly detecting post-transplant complications, with new biomarkers showing promise for ongoing monitoring of disease and potentially reducing the need for unnecessary invasive biopsies. The chemokines such as C-X-C motif chemokine ligand 10 (CXCL10), are particularly promising protein biomarkers for acute renal rejection, with urine samples being a desirable source for biomarkers. The aim of this review is to analyze the literature on the potential role of urinary CXCL10 protein in predicting kidney graft injuries. The results of this study demonstrate that evaluating urinary CXCL10 levels is more successful in identifying post-transplant injuries compared to assessing the CXCL10/Cr ratio.
Collapse
Affiliation(s)
- Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Ettenger RB, Seifert ME, Blydt-Hansen T, Briscoe DM, Holman J, Weng PL, Srivastava R, Fleming J, Malekzadeh M, Pearl M. Detection of Subclinical Rejection in Pediatric Kidney Transplantation: Current and Future Practices. Pediatr Transplant 2024; 28:e14836. [PMID: 39147695 DOI: 10.1111/petr.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The successes in the field of pediatric kidney transplantation over the past 60 years have been extraordinary. Year over year, there have been significant improvements in short-term graft survival. However, improvements in longer-term outcomes have been much less apparent. One important contributor has been the phenomenon of low-level rejection in the absence of clinical manifestations-so-called subclinical rejection (SCR). METHODS Traditionally, rejection has been diagnosed by changes in clinical parameters, including but not limited to serum creatinine and proteinuria. This review examines the shortcomings of this approach, the effects of SCR on kidney allograft outcome, the benefits and drawbacks of surveillance biopsies to identify SCR, and new urine and blood biomarkers that define the presence or absence of SCR. RESULTS Serum creatinine is an unreliable index of SCR. Surveillance biopsies are the method most utilized to detect SCR. However, these have significant drawbacks. New biomarkers show promise. These biomarkers include blood gene expression profiles and donor derived-cell free DNA; urine gene expression profiles; urinary cytokines, chemokines, and metabolomics; and other promising blood and urine tests. CONCLUSION Specific emphasis is placed on studies carried out in pediatric kidney transplant recipients. TRIAL REGISTRATION ClinicalTrials.gov: NCT03719339.
Collapse
Affiliation(s)
- Robert B Ettenger
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tom Blydt-Hansen
- Multi-Organ Transplant Program, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David M Briscoe
- Division of Nephrology, Department of Pediatrics Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John Holman
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Patricia L Weng
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rachana Srivastava
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James Fleming
- Transplant Genomics Inc., Framingham, Massachusetts, USA
| | - Mohammed Malekzadeh
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Meghan Pearl
- Division of Nephrology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Fernando JJ, Biswas R, Biswas L. Non-invasive molecular biomarkers for monitoring solid organ transplantation: A comprehensive overview. Int J Immunogenet 2024; 51:47-62. [PMID: 38200592 DOI: 10.1111/iji.12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Solid organ transplantation is a life-saving intervention for individuals with end-stage organ failure. Despite the effectiveness of immunosuppressive therapy, the risk of graft rejection persists in all viable transplants between individuals. The risk of rejection may vary depending on the degree of compatibility between the donor and recipient for both human leucocyte antigen (HLA) and non-HLA gene-encoded products. Monitoring the status of the allograft is a critical aspect of post-transplant management, with invasive biopsies being the standard of care for detecting rejection. Non-invasive biomarkers are increasingly being recognized as valuable tools for aiding in the detection of graft rejection, monitoring graft status and evaluating the efficacy of immunosuppressive therapy. Here, we focus on the importance of molecular biomarkers in solid organ transplantation and their potential role in clinical practice. Conventional molecular biomarkers used in transplantation include HLA typing, detection of anti-HLA antibodies, killer cell immunoglobulin-like receptor genotypes, and anti-MHC class 1-related chain A antibodies, which are important for assessing the compatibility of the donor and recipient. Emerging molecular biomarkers include the detection of donor-derived cell-free DNA, microRNAs (regulation of gene expression), exosomes (small vesicles secreted by cells), and kidney solid organ response test, in the recipient's blood for early signs of rejection. This review highlights the strengths and limitations of these molecular biomarkers and their potential role in improving transplant outcomes.
Collapse
Affiliation(s)
- Jeffy J Fernando
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
Atlas-Lazar A, Levy-Erez D. Approach to acute kidney injury following paediatric kidney transplant. Curr Opin Pediatr 2023; 35:268-274. [PMID: 36591982 DOI: 10.1097/mop.0000000000001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW In a child with evidence of acute kidney injury (AKI) following renal transplantation, it is important to quickly and accurately diagnose the cause to enable timely initiation of therapeutic interventions. The following article will discuss the differential diagnosis of acute graft dysfunction in paediatric kidney transplant recipients. This review will systematically guide the clinician through the common and less common causes and provide updates on current treatments. RECENT FINDINGS In patients with signs of graft dysfunction, rejection is an important cause to consider. Diagnosis of rejection relies on biopsy findings, an invasive and costly technique. Over the past 5 years, there has been a focus on noninvasive methods of diagnosing rejection, including serum and urinary biomarkers. SUMMARY This review discusses the differential diagnosis of acute graft dysfunction following transplant, with a focus on acute rejection, urinary tract infections and common viral causes, prerenal and postrenal causes, nephrotoxic medications, specifically calcineurin inhibitor toxicity, thrombotic microangiopathy and recurrence of the underlying disease. Each condition is discussed in detail, with a focus on clinical clues to the cause, incidence in the paediatric population, workup and treatment.
Collapse
Affiliation(s)
| | - Daniella Levy-Erez
- Schneider Children's Medical Center in Israel, Petah Tikva
- Tel Aviv, University School of Medicine, Tel Aviv, Israel
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Koukourikis P, Papaioannou M, Papanikolaou D, Apostolidis A. Urine Biomarkers in the Management of Adult Neurogenic Lower Urinary Tract Dysfunction: A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13030468. [PMID: 36766573 PMCID: PMC9914312 DOI: 10.3390/diagnostics13030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neurogenic lower urinary tract dysfunction requires lifelong surveillance and management for the perseveration of patients' quality of life and the prevention of significant morbidity and mortality. Urine biomarkers are an attractive noninvasive method of surveillance for these patients. The aim of this systematic review is to search for and critically appraise studies that investigate the clinical usefulness of urine biomarkers in the management of neurogenic lower urinary tract dysfunction (NLUTD) in adults. METHODS This review was conducted according to PRISMA and MOOSE guidelines. Search strategy included PubMed, CENTRAL, and Scopus (until October 2022). Studies investigating potential urine biomarkers for the management of adults with NLUTD were included. RESULTS Fifteen studies fulfilled the criteria. To date, a variety of different urine molecules have been investigated for the diagnosis and management of neurogenic overactive bladder and detrusor overactivity (nerve growth factor, brain-derived neurotrophic factor, prostaglandin E2, prostaglandin F2α, transformation growth factor β-1, tissue inhibitor metalloproteinase-2, matrix metalloproteinase-2, substance P, microRNA), diagnosis of vesicoureteral reflux (exosomal vitronectin), urinary tract infection (neutrophil gelatinase-associated lipocalin, interleukin 6) and bladder cancer screening (cytology, BTA stat, survivin) in neurological patients. CONCLUSION Further studies are needed to specify the utility of each molecule in the management algorithm of adult NLUTD.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, Thessaloniki 56429, Greece
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Papanikolaou
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, Thessaloniki 56429, Greece
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, Thessaloniki 56429, Greece
- Correspondence: ; Tel.: +30-2310-991-476; Fax: +30-2310-681-022
| |
Collapse
|
7
|
Anfaiha-Sanchez M, Rodrigo Calabia E, Ortiz A, Martin-Lorenzo M, Alvarez-Llamas G. Donor liquid biopsy and outcomes in kidney transplantation. Clin Kidney J 2022; 16:447-455. [PMID: 36865017 PMCID: PMC9972840 DOI: 10.1093/ckj/sfac227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Kidney transplantation is the treatment of choice for patients with kidney failure. Priority on the waiting list and optimal donor-recipient matching are guided by mathematical scores, clinical variables and macroscopic observation of the donated organ. Despite the increasing rates of successful kidney transplantation, maximizing the number of available organs while ensuring the optimum long-term performance of the transplanted kidney remains both key and challenging, and no unequivocal markers are available for clinical decision making. Moreover, the majority of studies performed thus far has focused on the risk of primary non-function and delayed graft function and subsequent survival and have mainly analysed recipients' samples. Given the increasing use of donors with expanded criteria and/or cardiac death, predicting whether grafts will provide sufficient kidney function is increasingly more challenging. Here we compile the available tools for pre-transplant kidney evaluation and summarize the latest molecular data from donors that may predict short-term (immediate or delayed graft function), medium-term (6 months) and long-term (≥12 months) kidney function. The use of liquid biopsy (urine, serum, plasma) to overcome the limitations of the pre-transplant histological evaluation is proposed. Novel molecules and approaches such as the use of urinary extracellular vesicles are also reviewed and discussed, along with directions for future research.
Collapse
Affiliation(s)
| | - Emilio Rodrigo Calabia
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Santander, Spain,Valdecilla Biomedical Research Institute, IDIVAL, Santander, Spain,RICORS2040, Immunology and Nephrology Departments, Fundacion Jimenez Diaz (Madrid) and Hospital Marques de Valdecilla (Santander), Spain
| | - Alberto Ortiz
- RICORS2040, Immunology and Nephrology Departments, Fundacion Jimenez Diaz (Madrid) and Hospital Marques de Valdecilla (Santander), Spain,Nephrology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | | |
Collapse
|
8
|
Franchon Marques Tejada N, Ziroldo Lopes JV, Duarte Gonçalves LE, Mamede Costa Andrade da Conceição I, Franco GR, Ghirotto B, Câmara NOS. AIM2 as a putative target in acute kidney graft rejection. Front Immunol 2022; 13:839359. [PMID: 36248890 PMCID: PMC9561248 DOI: 10.3389/fimmu.2022.839359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute rejection (AR) is a process triggered via the recognition of grafted organ-derived antigens by the immune system, which could present as a life-threatening condition. In the context of a kidney transplant, despite improvement with immunosuppressive therapies, AR maintains a significant incidence of 10%, and currently available drugs generally act in similar and canonical pathways of lymphocyte activation. This prompted the research for different approaches to identify potential novel targets that could improve therapeutic interventions. Here, we conducted a transcriptome analysis comparing groups of acute rejection (including T cell-mediated rejection and antibody-mediated rejection) to stable grafts that included differentially expressed genes, transcription factor and kinase enrichment, and Gene Set Enrichment Analysis. These analyses revealed inflammasome enhancement in rejected grafts and AIM2 as a potential component linked to acute rejection, presenting a positive correlation to T-cell activation and a negative correlation to oxidative phosphorylation metabolism. Also, the AIM2 expression showed a global accuracy in discerning acute rejection grafts (area under the curve (AUC) = 0.755 and 0.894, p < 0.0001), and meta-analysis comprising different studies indicated a considerable enhancement of AIM2 in rejection (standardized mean difference (SMD) = 1.45, [CI 95%, 1.18 to 1.71]), especially for T cell-mediated rejection (TCMR) (SMD = 2.01, [CI 95%, 1.58 to 2.45]). These findings could guide future studies of AIM2 as either an adjuvant target for immunosuppression or a potential biomarker for acute rejection and graft survival.
Collapse
Affiliation(s)
- Nathália Franchon Marques Tejada
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - João Vitor Ziroldo Lopes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Duarte Gonçalves
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Izabela Mamede Costa Andrade da Conceição
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Glória Regina Franco
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Niels Olsen Saraiva Câmara, ;
| |
Collapse
|
9
|
Chen L, Qin Y, Lin B, Yu X, Zheng S, Zhou X, Liu X, Wang Y, Huang B, Jin J, Wang L. Clinical value of the sTim‑3 level in chronic kidney disease. Exp Ther Med 2022; 24:606. [DOI: 10.3892/etm.2022.11543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lingli Chen
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Bo Lin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaomei Yu
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Shaoxiong Zheng
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Xiaobin Liu
- Department of Nephrology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Juan Jin
- Department of Nephrology, The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 311300, P.R. China
| | - Liang Wang
- Department of Nephrology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
10
|
Grothgar E, Goerlich N, Samans B, Skopnik CM, Metzke D, Klocke J, Prskalo L, Freund P, Wagner L, Duerr M, Matz M, Olek S, Budde K, Paliege A, Enghard P. Urinary CD8+HLA-DR+ T Cell Abundance Non-invasively Predicts Kidney Transplant Rejection. Front Med (Lausanne) 2022; 9:928516. [PMID: 35911418 PMCID: PMC9334669 DOI: 10.3389/fmed.2022.928516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022] Open
Abstract
Early detection of kidney transplant (KT) rejection remains a challenge in patient care. Non-invasive biomarkers hold high potential to detect rejection, adjust immunosuppression, and monitor KT patients. So far, no approach has fully satisfied requirements to innovate routine monitoring of KT patients. In this two-center study we analyzed a total of 380 urine samples. T cells and tubular epithelial cells were quantified in KT patients with graft deterioration using flow cytometry. Epigenetic urine cell quantification was used to confirm flow cytometric results. Moreover, a cohort of KT patients was followed up during the first year after transplantation, tracking cell subsets over time. Abundance of urinary cell counts differed in patients with and without rejection. Most strikingly, various T cell subsets were enriched in patients with T cell-mediated rejection (TCMR) compared to patients without TCMR. Among T cell subsets, CD8+HLA-DR+ T cells were most distinctive (AUC = 0.91, Spec.: 95.9%, Sens.: 76.5%). Epigenetic analysis confirmed T cell and tubular epithelial cell quantities as determined by flow cytometry. Urinary T cell abundance in new KT patients decreased during their first year after transplantation. In conclusion urinary T cells reflect intrarenal inflammation in TCMR. T cell subsets yield high potential to monitor KT patients and detect rejection. Hereby we present a promising biomarker to non-invasively diagnose TCMR.
Collapse
Affiliation(s)
- Emil Grothgar
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Bjoern Samans
- Ivana Türbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Christopher M. Skopnik
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Paul Freund
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Leonie Wagner
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Michael Duerr
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mareen Matz
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Olek
- Ivana Türbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Philipp Enghard
- Department of Nephrology and Intensive Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| |
Collapse
|
11
|
Westphal SG, Mannon RB. Emerging biomarkers in kidney transplantation and challenge of clinical implementation. Curr Opin Organ Transplant 2022; 27:15-21. [PMID: 34939960 DOI: 10.1097/mot.0000000000000941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Despite improvement in short-term outcomes after kidney transplantation, long-term outcomes remain suboptimal. Conventional biomarkers are limited in their ability to reliably identify early immunologic and nonimmunologic injury. Novel biomarkers are needed for noninvasive diagnosis of subclinical injury, prediction of response to treatment, and personalization of the care of kidney transplant recipients. RECENT FINDINGS Recent biotechnological advances have led to the discovery of promising molecular biomarker candidates. However, translating potential biomarkers from bench to clinic is challenging, and many potential biomarkers are abandoned prior to clinical implementation. Despite these challenges, several promising urine, blood, and tissue novel molecular biomarkers have emerged and are approaching incorporation into clinical practice. SUMMARY This article highlights the challenges in adopting biomarker-driven posttransplant management and reviews several promising emerging novel biomarkers that are approaching clinical implementation.
Collapse
Affiliation(s)
- Scott G Westphal
- Division of Nephrology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
12
|
Li X, Liu B, Cui P, Zhao X, Liu Z, Qi Y, Zhang G. Integrative Analysis of Peripheral Blood Indices for the Renal Sinus Invasion Prediction of T1 Renal Cell Carcinoma: An Ensemble Study Using Machine Learning-Assisted Decision-Support Models. Cancer Manag Res 2022; 14:577-588. [PMID: 35210855 PMCID: PMC8857979 DOI: 10.2147/cmar.s348694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Renal sinus invasion is an attributive factor affecting the prognosis of renal cell carcinoma (RCC). This study aimed to construct a risk prediction model that could stratify patients with RCC and predict renal sinus invasion with the help of a machine learning (ML) algorithm. Patients and Methods We retrospectively recruited 1229 patients diagnosed with T1 stage RCC at the Baotou Cancer Hospital between November 2013 and August 2021. Iterative analysis was used to screen out predictors related to renal sinus invasion, after which ML-based models were developed to predict renal sinus invasion in patients with T1 stage RCC. The receiver operating characteristic curve (ROC), decision curve analysis (DCA), and clinical impact curve (CIC) were performed to evaluate the robustness and clinical practicability of each model. Results A total of 21 candidate variables were shortlisted for model building. Iterative analysis screened that neutrophil to albumin ratio (NAR), hemoglobin level * albumin level * lymphocyte count/platelet count ratio (HALP), prognostic nutrition index (PNI), body mass index*serum albumin/neutrophil-lymphocyte ratio (AKI), NAR, and fibrinogen (FIB) concentration (NARFIB), platelet to lymphocyte ratio (PLR), and R.E.N.A.L score was related to renal sinus invasion and contributed significantly to ML-based algorithm. The areas under the ROC curve (AUCs) of the random forest classifier (RFC) model, support vector machine (SVM), eXtreme gradient boosting (XGBoost), artificial neural network (ANN), and decision tree (DT) ranged from 0.797 to 0.924. The optimal risk probability of renal sinus invasion predicted was RFC (AUC = 0.924, 95% confidence interval [CI]: 0.414–1.434), which showed robust discrimination for identifying high-risk patients. Conclusion We successfully develop practical models for renal sinus invasion prediction, particularly the RFC, which could contribute to early detection via integrating systemic inflammatory factors and nutritional parameters.
Collapse
Affiliation(s)
- Xin Li
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Bo Liu
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Peng Cui
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Xingxing Zhao
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Zhao Liu
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Yanxiang Qi
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Gangling Zhang
- Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
- Correspondence: Gangling Zhang, Department of Thoracic Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, 014030, People’s Republic of China, Tel +86-138-4827-8198, Email
| |
Collapse
|
13
|
Seiler LK, Phung NL, Nikolin C, Immenschuh S, Erck C, Kaufeld J, Haller H, Falk CS, Jonczyk R, Lindner P, Thoms S, Siegl J, Mayer G, Feederle R, Blume CA. An Antibody-Aptamer-Hybrid Lateral Flow Assay for Detection of CXCL9 in Antibody-Mediated Rejection after Kidney Transplantation. Diagnostics (Basel) 2022; 12:diagnostics12020308. [PMID: 35204399 PMCID: PMC8871475 DOI: 10.3390/diagnostics12020308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic antibody-mediated rejection (AMR) is a key limiting factor for the clinical outcome of a kidney transplantation (Ktx), where early diagnosis and therapeutic intervention is needed. This study describes the identification of the biomarker CXC-motif chemokine ligand (CXCL) 9 as an indicator for AMR and presents a new aptamer-antibody-hybrid lateral flow assay (hybrid-LFA) for detection in urine. Biomarker evaluation included two independent cohorts of kidney transplant recipients (KTRs) from a protocol biopsy program and used subgroup comparisons according to BANFF-classifications. Plasma, urine and biopsy lysate samples were analyzed with a Luminex-based multiplex assay. The CXCL9-specific hybrid-LFA was developed based upon a specific rat antibody immobilized on a nitrocellulose-membrane and the coupling of a CXCL9-binding aptamer to gold nanoparticles. LFA performance was assessed according to receiver operating characteristic (ROC) analysis. Among 15 high-scored biomarkers according to a neural network analysis, significantly higher levels of CXCL9 were found in plasma and urine and biopsy lysates of KTRs with biopsy-proven AMR. The newly developed hybrid-LFA reached a sensitivity and specificity of 71% and an AUC of 0.79 for CXCL9. This point-of-care-test (POCT) improves early diagnosis-making in AMR after Ktx, especially in KTRs with undetermined status of donor-specific HLA-antibodies.
Collapse
Affiliation(s)
- Lisa K. Seiler
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Ngoc Linh Phung
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (C.N.); (S.I.)
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (C.N.); (S.I.)
| | - Christian Erck
- Helmholtz Centre for Infection Research, Cellular Proteome Research Group, 38124 Braunschweig, Germany;
| | - Jessica Kaufeld
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (H.H.)
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (H.H.)
| | - Christine S. Falk
- Institute for Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Patrick Lindner
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Stefanie Thoms
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Julia Siegl
- Chemical Biology & Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany; (J.S.); (G.M.)
- Center of Aptamer Research & Development (CARD), University of Bonn, 53121 Bonn, Germany
| | - Günter Mayer
- Chemical Biology & Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany; (J.S.); (G.M.)
- Center of Aptamer Research & Development (CARD), University of Bonn, 53121 Bonn, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Cornelia A. Blume
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
The current standard of serum creatinine and biopsy to monitor allograft health has many limitations. The most significant drawback of the current standard is the lack of sensitivity and specificity to allograft injuries, which are diagnosed only after significant damage to the allograft. Thus, it is of critical need to identify a biomarker that is sensitive and specific to the early detection of allograft injuries. Urine, as the direct renal ultrafiltrate that can be obtained noninvasively, directly reflects intrarenal processes in the allograft at greater accuracy than analysis of peripheral blood. We review transcriptomic, metabolomic, genomic, and proteomic discovery-based approaches to identifying urinary biomarkers for the noninvasive detection of allograft injuries, as well as the use of urine cell-free DNA in the QSant urine assay as a sensitive surrogate for the renal allograft biopsy for rejection diagnosis.
Collapse
|
15
|
Deville KA, Seifert ME. Biomarkers of alloimmune events in pediatric kidney transplantation. Front Pediatr 2022; 10:1087841. [PMID: 36741087 PMCID: PMC9895094 DOI: 10.3389/fped.2022.1087841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Alloimmune events such as the development of de novo donor-specific antibody (dnDSA), T cell-mediated rejection (TCMR), and antibody-mediated rejection (ABMR) are the primary contributors to kidney transplant failure in children. For decades, a creatinine-based estimated glomerular filtration rate (eGFR) has been the non-invasive gold standard biomarker for detecting clinically significant alloimmune events, but it suffers from low sensitivity and specificity, especially in smaller children and older allografts. Many clinically "stable" children (based on creatinine) will have alloimmune events known as "subclinical acute rejection" (based on biopsy) that merely reflect the inadequacy of creatinine-based estimates for alloimmune injury rather than a distinct phenotype from clinical rejection with allograft dysfunction. The poor biomarker performance of creatinine leads to many unnecessary surveillance and for-cause biopsies that could be avoided by integrating non-invasive biomarkers with superior sensitivity and specificity into current clinical paradigms. In this review article, we will present and appraise the current state-of-the-art in monitoring for alloimmune events in pediatric kidney transplantation. We will first discuss the current clinical standards for assessing the presence of alloimmune injury and predicting long-term outcomes. We will review principles of biomarker medicine and the application of comprehensive metrics to assess the performance of a given biomarker against the current gold standard. We will then highlight novel blood- and urine-based biomarkers (with special emphasis on pediatric biomarker studies) that have shown superior diagnostic and prognostic performance to the current clinical standards including creatinine-based eGFR. Finally, we will review some of the barriers to translating this research and implementing emerging biomarkers into common clinical practice, and present a transformative approach to using multiple biomarker platforms at different times to optimize the detection and management of critical alloimmune events in pediatric kidney transplant recipients.
Collapse
Affiliation(s)
- Kyle A Deville
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL, United States
| | - Michael E Seifert
- Division of Pediatric Nephrology, Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL, United States
| |
Collapse
|
16
|
Filippone EJ, Gulati R, Farber JL. Noninvasive Assessment of the Alloimmune Response in Kidney Transplantation. Adv Chronic Kidney Dis 2021; 28:548-560. [PMID: 35367023 DOI: 10.1053/j.ackd.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Transplantation remains the optimal mode of kidney replacement therapy, but unfortunately long-term graft survival after 1 year remains suboptimal. The main mechanism of chronic allograft injury is alloimmune, and current clinical monitoring of kidney transplants includes measuring serum creatinine, proteinuria, and immunosuppressive drug levels. The most important biomarker routinely monitored is human leukocyte antigen (HLA) donor-specific antibodies (DSAs) with the frequency based on underlying immunologic risk. HLA-DSA should be measured if there is graft dysfunction, immunosuppression minimization, or nonadherence. Antibody strength is semiquantitatively estimated as mean fluorescence intensity, with titration studies for equivocal cases and for following response to treatment. Determination of in vitro C1q or C3d positivity or HLA-DSA IgG subclass analysis remains of uncertain significance, but we do not recommend these for routine use. Current evidence does not support routine monitoring of non-HLA antibodies except anti-angiotensin II type 1 receptor antibodies when the phenotype is appropriate. The monitoring of both donor-derived cell-free DNA in blood or gene expression profiling of serum and/or urine may detect subclinical rejection, although mainly as a supplement and not as a replacement for biopsy. The optimal frequency and cost-effectiveness of using these noninvasive assays remain to be determined. We review the available literature and make recommendations.
Collapse
|
17
|
Aalami AH, Abdeahad H, Mesgari M, Sathyapalan T, Sahebkar A. Urinary Angiogenin as a Marker for Bladder Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5557309. [PMID: 33997007 PMCID: PMC8099530 DOI: 10.1155/2021/5557309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023]
Abstract
AIMS Bladder cancer (BCa) is a common cancer in North America and Europe that carries considerable morbidity and mortality. A reliable biomarker for early detection of the bladder is crucial for improving the prognosis of BCA. In this meta-analysis, we examine the diagnostic role of the angiogenin (ANG) protein in patients' urine with bladder neoplasm. METHODS We performed a systematic literature search using ScienceDirect, Web of Science, PubMed/MEDLINE, Scopus, Google Scholar, and Embase, up to 10th October 2020 databases. Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.2.2 software calculated the pooled specificity, sensitivity, area under the curve (AUC), diagnostic odds ratio (DOR), positive likelihood ratio (LR+), negative likelihood ratio (LR-), Q ∗ index, and summary receiver-operating characteristic (SROC) for the role of ANG as a urinary biomarker for BCa patients. RESULTS Four case-control studies were included with 656 participants (417 cases and 239 controls) in this meta-analysis. The pooled sensitivity of 0.71 (95% CI: 0.66-0.75), specificity of 0.78 (95% CI: 0.73-0.81), LR+ of 3.34 (95% CI: 2.02-5.53), LR- of 0.37 (95% CI: 0.32-0.44), DOR of 9.99 (95% CI: 4.69-21.28), and AUC of 0.789 and Q ∗ index of 0.726 demonstrate acceptable diagnostic precision of ANG in identifying BCa. CONCLUSION This meta-analysis showed that ANG could be a fair biomarker for the diagnosis of BCa patients.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, Collogue of Health, University of Utah, Salt Lake City, UT, USA
| | - Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle? Cells 2021; 10:cells10010059. [PMID: 33401654 PMCID: PMC7823786 DOI: 10.3390/cells10010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Kidneys of mice, rats and humans possess progenitors that maintain daily homeostasis and take part in endogenous regenerative processes following injury, owing to their capacity to proliferate and differentiate. In the glomerular and tubular compartments of the nephron, consistent studies demonstrated that well-characterized, distinct populations of progenitor cells, localized in the parietal epithelium of Bowman capsule and scattered in the proximal and distal tubules, could generate segment-specific cells in physiological conditions and following tissue injury. However, defective or abnormal regenerative responses of these progenitors can contribute to pathologic conditions. The molecular characteristics of renal progenitors have been extensively studied, revealing that numerous classical and evolutionarily conserved pathways, such as Notch or Wnt/β-catenin, play a major role in cell regulation. Others, such as retinoic acid, renin-angiotensin-aldosterone system, TLR2 (Toll-like receptor 2) and leptin, are also important in this process. In this review, we summarize the plethora of molecular mechanisms directing renal progenitor responses during homeostasis and following kidney injury. Finally, we will explore how single-cell RNA sequencing could bring the characterization of renal progenitors to the next level, while knowing their molecular signature is gaining relevance in the clinic.
Collapse
|
19
|
García-Estañ J, Vargas F. Editorial for Special Issue-Biomarkers of Renal Disease. Int J Mol Sci 2020; 21:ijms21218077. [PMID: 33138007 PMCID: PMC7662859 DOI: 10.3390/ijms21218077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Joaquín García-Estañ
- Departamento de Fisiologia, Facultad de Medicina, IMIB, Universidad de Murcia, 30120 Murcia, Spain
- Correspondence: (J.G.-E.); (F.V.)
| | - Felix Vargas
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain
- Correspondence: (J.G.-E.); (F.V.)
| |
Collapse
|