1
|
Mogas T, García-Martínez T, Martínez-Rodero I. Methodological approaches in vitrification: Enhancing viability of bovine oocytes and in vitro-produced embryos. Reprod Domest Anim 2024; 59 Suppl 3:e14623. [PMID: 39396876 DOI: 10.1111/rda.14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 10/15/2024]
Abstract
Cryopreservation of bovine oocytes and embryos is essential for long-term preservation and widespread distribution of genetic material, particularly in bovine in vitro embryo production, which has witnessed substantial growth in the past decade due to advancements in reproductive biotechnologies. Among current cryopreservation methods, vitrification has emerged as the preferred cryopreservation technique over slow freezing for preserving oocytes and in vitro-produced (IVP) embryos, as it effectively addresses membrane chilling injury and ice crystal formation. Nonetheless, challenges remain and a simple and robust vitrification protocol that guarantees the efficiency and viability after warming has not yet been developed. Furthermore, although slow cooling can easily be adapted for direct transfer, an easier and more practical vitrification protocol for IVP embryos is required to allow the transfer of IVP embryos on farms using in-straw dilution. In addition, the susceptibility of bovine oocytes and embryos to cryoinjuries highlights the need for novel strategies to improve their cryotolerance. This manuscript examines various methodological approaches for increasing the viability of bovine oocytes and IVP embryos during vitrification. Strategies such as modifying lipid content or mitigating oxidative damage have shown promise in improving cryotolerance. Additionally, mathematical modelling of oocyte and embryo membrane permeability has facilitated the rational design of cryopreservation protocols, optimizing the exposure time and concentration of cryoprotectants to reduce cytotoxicity.
Collapse
Affiliation(s)
- Teresa Mogas
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Tania García-Martínez
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Olexiková L, Makarevich A, Dujíčková L, Kubovičová E, Chrenek P. Factors affecting cryotolerance of mammalian oocytes. Cryobiology 2024; 116:104946. [PMID: 39069220 DOI: 10.1016/j.cryobiol.2024.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Cryopreservation of oocytes is an important tool for preserving genetic resources and for farm animals breeding. Processes taking place during vitrification affect oocytes and result in their reduced developmental capacity and lower fertilisation rates of cryopreserved oocytes. Further improvement in cryopreservation techniques is still required. Several authors already summarized the actual state and perspectives of oocyte cryopreservation as well as potential approaches to improve their development after thawing. The aim of this review is to specify factors affecting cryotolerance of mammalian oocytes, especially bovine in vitro matured oocytes, and to identify the areas, where more efforts were made to improve the success of oocyte cryopreservation. These factors include oocyte lipid content, membrane composition, mRNA protection, cytoskeleton stabilization and application of such potential stimulators of cell cryotolerance as antioxidants, growth factors or antifreeze proteins.
Collapse
Affiliation(s)
- Lucia Olexiková
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic.
| | - Alexander Makarevich
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic
| | - Linda Dujíčková
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic
| | - Elena Kubovičová
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic
| | - Peter Chrenek
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic; Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
3
|
McKinley E, Speckhart SL, Keane JA, Oliver MA, Rhoads ML, Edwards JL, Biase FH, Ealy AD. Influences of Supplementing Selective Members of the Interleukin-6 Cytokine Family on Bovine Oocyte Competency. Animals (Basel) 2023; 14:44. [PMID: 38200775 PMCID: PMC10778514 DOI: 10.3390/ani14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This work explored whether supplementing selective members of the interleukin-6 (IL6) cytokine family during in vitro bovine oocyte maturation affects maturation success, cumulus-oocyte complex (COC) gene expression, fertilization success, and embryo development potential. Human recombinant proteins for IL6, IL11, and leukemia inhibitory factor (LIF) were supplemented to COCs during the maturation period, then fertilization and embryo culture commenced without further cytokine supplementation. The first study determined that none of these cytokines influenced the rate that oocytes achieved arrest at meiosis II. The second study identified that LIF and IL11 supplementation increases AREG transcript abundance. Supplementation with IL6 supplementation did not affect AREG abundance but reduced HAS2 transcript abundance. Several other transcriptional markers of oocyte competency were not affected by any of the cytokines. The third study determined that supplementing these cytokines during maturation did not influence fertilization success, but either LIF or IL11 supplementation increased blastocyst development. No effect of IL6 supplementation on subsequent blastocyst development was detected. The fourth experiment explored whether each cytokine treatment affects the post-thaw survivability of cryopreserved IVP blastocysts. None of the cytokines supplemented during oocyte maturation produced any positive effects on post-thaw blastocyst re-expansion and hatching. In conclusion, these outcomes implicate IL11 and LIF as potentially useful supplements for improving bovine oocyte competency.
Collapse
Affiliation(s)
- Endya McKinley
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Savannah L. Speckhart
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Jessica A. Keane
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Mary A. Oliver
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Michelle L. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - J. Lannett Edwards
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Fernando H. Biase
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| |
Collapse
|
4
|
Zhao T, Pan Y, Li Q, Ding T, Niayale R, Zhang T, Wang J, Wang Y, Zhao L, Han X, Baloch AR, Cui Y, Yu S. Leukemia inhibitory factor enhances the development and subsequent blastocysts quality of yak oocytes in vitro. Front Vet Sci 2022; 9:997709. [PMID: 36213393 PMCID: PMC9533679 DOI: 10.3389/fvets.2022.997709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a multipotent cytokine of the IL-6 family which plays a critical role in the maturation and development of oocytes. This study evaluated the influence of LIF on the maturation and development ability of yak oocytes, and the quality of subsequent blastocysts under in vitro culture settings. Different concentrations of LIF (0, 25, 50, and 100 ng/mL) were added during the in vitro culture of oocytes to detect the maturation rate of oocytes, levels of mitochondria, reactive oxygen species (ROS), actin, and apoptosis in oocytes, mRNA transcription levels of apoptosis and antioxidant-related genes in oocytes, and total cell number and apoptosis levels in subsequent blastocysts. The findings revealed that 50 ng/mL LIF could significantly increase the maturation rate (p < 0.01), levels of mitochondria (p < 0.01) and actin (p < 0.01), and mRNA transcription levels of anti-apoptotic and antioxidant-related genes in yak oocytes. Also, 50 ng/mL LIF could significantly lower the generation of ROS (p < 0.01) and apoptosis levels of oocytes (p < 0.01). In addition, blastocysts formed from 50 ng/mL LIF-treated oocytes showed significantly larger total cell numbers (p < 0.01) and lower apoptosis rates (p < 0.01) than the control group. In conclusion, the addition of LIF during the in vitro maturation of yak oocytes improved the quality and the competence of maturation and development in oocytes, as well as the quality of subsequent blastocysts. The result of this study provided some insights into the role and function of LIF in vitro yak oocytes maturation, as well as provided fundamental knowledge for assisted reproductive technologies in the yak.
Collapse
Affiliation(s)
- Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Qin Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Tianyi Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Robert Niayale
- School of Veterinary Medicine, University for Development Studies, Tamale, Ghana
| | - Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Abdul Rasheed Baloch
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
- *Correspondence: Sijiu Yu
| |
Collapse
|
5
|
Sánchez-Ajofrín I, Martín-Maestro A, Medina-Chávez DA, Laborda-Gomariz JÁ, Peris-Frau P, Garde JJ, Soler AJ. Melatonin rescues the development and quality of oocytes and cumulus cells after prolonged ovary preservation: An ovine in vitro model. Theriogenology 2022; 186:1-11. [DOI: 10.1016/j.theriogenology.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
6
|
Dong J, Guo C, Zhou S, Zhao A, Li J, Mi Y, Zhang C. Leukemia inhibitory factor prevents chicken follicular atresia through PI3K/AKT and Stat3 signaling pathways. Mol Cell Endocrinol 2022; 543:111550. [PMID: 34990741 DOI: 10.1016/j.mce.2021.111550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023]
Abstract
Autophagy of granulosa cell (GC) may be a supplementary mechanism involved in follicular atresia through cooperating with apoptosis. Leukemia inhibitory factor (LIF) has been shown to promote follicular growth, through the underlying molecular mechanisms remain unclear. Rapamycin, an autophagy inducer, triggered the elevation of GC apoptosis within follicles, and then prevented follicular growth. However, combined treatment with LIF relieved the follicular regression caused by rapamycin, mainly resulting in alleviating the decline of GCs viability and cell autophagic apoptosis, and eventually, promoting follicle development. Further investigation revealed that LIF inhibited the GC autophagic apoptosis by activating PI3K/AKT and Stat3 pathways, reflecting an increase of BCL-2 expression but a decrease in BECN1. Additionally, blocking PI3K/AKT and Stat3 pathways resulted in the reduction of LIF protection against follicular atresia. These findings illustrated that LIF activated the PI3K/AKT and Stat3 signaling pathways to inhibit GC autophagic cell death, and further relieve chicken follicular atresia.
Collapse
Affiliation(s)
- Juan Dong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changquan Guo
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - An Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
A Shorter Equilibration Period Improves Post-Warming Outcomes after Vitrification and in Straw Dilution of In Vitro-Produced Bovine Embryos. BIOLOGY 2021; 10:biology10020142. [PMID: 33579034 PMCID: PMC7916797 DOI: 10.3390/biology10020142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
This study was designed to the optimize vitrification and in-straw warming protocol of in vitro-produced bovine embryos by comparing two different equilibration periods, short equilibrium (SE: 3 min) and long equilibrium (LE: 12 min). Outcomes recorded in vitrified day seven (D7) and day eight (D8) expanded blastocysts were survival and hatching rates, cell counts, apoptosis rate, and gene expression. While survival rates at 3 and 24 h post-warming were reduced (p < 0.05) after vitrification, the hatching rates of D7 embryos vitrified after SE were similar to the rates recorded in fresh non-vitrified blastocysts. The hatching rates of vitrified D8 blastocysts were lower (p < 0.05) than of fresh controls regardless of treatment. Total cell count, and inner cell mass and trophectoderm cell counts were similar in hatched D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values regardless of treatment. The apoptosis rate was significantly higher in both treatment groups compared to fresh controls, although rates were lower for SE than LE. No differences emerged in BAX, AQP3, CX43, and IFNτ gene expression between the treatments, whereas a significantly greater abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE. A shorter equilibration vitrification protocol was found to improve post-warming outcomes and time efficiency after in-straw warming/dilution.
Collapse
|