1
|
Dharavath R, A S. Employing soil isolated fungi for production of bioactive phenolic compounds: a fermentative approach. Prep Biochem Biotechnol 2024; 54:1121-1131. [PMID: 38477871 DOI: 10.1080/10826068.2024.2326882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
An efficient method of solid-state fermentation (SSF) is reported for producing bioactive phenolic compounds using soil-isolated fungi. Antioxidant activity using a rapid DPPH (1,1-diphenyl-2-picryl hydrazyl), was employed to screen the 120 fungal isolates from soil. Aspergillus terreus 1, Aspergillus fumigatus, Aspergillus terreus 2, Penicillium citrinum, Aspergillus wentii1, Aspergillus wentii 2, Penicillium expansum and Penicillium granulatum were chosen, concerning their antioxidant activity and total phenolic content. These fungal strains were applied on agro residues viz. sugarcane bagasse, corn cob, rice straw, pea pod and wheat straw, to evaluate the release of phenolic compounds. The fermented extracts from various agro-residues showed good antioxidant activity against DPPH, ferric ion, and nitric oxide radicals. The highest antioxidant activity was observed in fermented extracts of sugarcane bagasse, followed by pea pod. Additionally, the total phenolic content in the fermented extracts positively correlated with antioxidant potential. This study highlights the significant potential of solid substrate fermentation using soil-isolated fungi and agro-residues to produce bioactive phenolic compounds with potent antioxidant properties. The utilization of SSF for the extraction of bioactive compounds from natural sources not only offers a clean and sustainable approach but also contributes to the valorization of agro-industrial residues.
Collapse
Affiliation(s)
| | - Srividya A
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
2
|
Xie L, Yan H, Han L, Cui L, Hussain H, Feng Q, Zhao Y, Zhang Z, Li J, Aziz S, He J, Wang D. Structural characterization and anti-inflammatory activity of neutral polysaccharides from American ginseng. Int J Biol Macromol 2023; 248:125586. [PMID: 37379950 DOI: 10.1016/j.ijbiomac.2023.125586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
American ginseng, a precious classic herbal medicine, is used extensively in China for life prolongation purpose. This study aimed to elucidate the structure and anti-inflammatory activity of a neutral polysaccharide isolated from American ginseng (AGP-A). Nuclear magnetic resonance in conjunction with gas chromatography-mass spectrometry were used to analyze AGP-A's structure, whereas Raw264.7 cell and zebrafish models were employed to assess its anti-inflammatory activity. According to the results, AGP-A has a molecular weight of 5561 Da and is primarily consisted of glucose. Additionally, linear α-(1 → 4)-glucans with α-D-Glcp-(1 → 6)-α-Glcp-(1→ residues linked to the backbone at C-6 formed the backbone of AGP-A. Furthermore, AGP-A significantly decreased pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in Raw264.7 cell model. AGP-A in zebrafish model significantly lower the massive recruitment of neutrophils to the neuromast of the caudal lateral line. Inflammation may be relieved by the AGP-A component in American ginseng based on these results. In conclusion, our study shows the structural characterization, remarkable anti-inflammatory properties of AGP-A and its potential curative efficacy as a safe, valid natural anti-inflammatory medicine.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Liwen Han
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Li Cui
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Qixiang Feng
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yan Zhao
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Zhihao Zhang
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Jinfan Li
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Shahid Aziz
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan
| | - Jixiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Daijie Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China.
| |
Collapse
|
3
|
Simsek O, Canli K, Benek A, Turu D, Altuner EM. Biochemical, Antioxidant Properties and Antimicrobial Activity of Epiphytic Leafy Liverwort Frullania dilatata (L.) Dumort. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091877. [PMID: 37176934 PMCID: PMC10181397 DOI: 10.3390/plants12091877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
In this study, the biochemical, antioxidant properties, and antimicrobial activity of the epiphytic leafy liverwort Frullania dilatata (L.) Dumort were investigated. Due to the scarcity and difficulty in obtaining liverworts, research on their bioactivity is limited; thus, this study aimed to uncover the potential of F. dilatata. The antimicrobial activity was evaluated against various microorganisms, including food isolates, clinical isolates, multidrug-resistant strains, and standard strains, using the disk diffusion method and determining the minimum inhibitory concentration (MIC) values. This study represents the first antioxidant investigation on F. dilatata and an antimicrobial study using ethanol extract and the disk diffusion method. Notably, susceptibility was observed in Enterococcus faecalis ATCC 29212, Enterococcus faecium FI, Listeria monocytogenes ATCC 7644, Providencia rustigianii MDR, and Staphylococcus aureus ATCC 25923. The antioxidant capacity was assessed using the DPPH method, emphasizing the high scavenging performance. Gas chromatography-mass spectrometry (GC-MS) analysis identified the primary compounds as frullanolide (19.08%), 2,3-Dimethylanisole (15.21%), linoleic acid (11.11%), palmitic acid (9.83%), and valerenic acid (5.3%). The results demonstrated the significant antimicrobial activity of F. dilatata against the tested microorganisms and its potent antioxidant properties. These findings emphasize the potential of F. dilatata as a promising source of natural antimicrobial and antioxidant agents, underscoring the importance of further investigation into its bioactive compounds and elucidating the mechanisms of action in future studies.
Collapse
Affiliation(s)
- Ozcan Simsek
- Department of Forestry, Yenice Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17950, Türkiye
| | - Kerem Canli
- Department of Biology, Faculty of Science, Dokuz Eylül University, Izmir 35390, Türkiye
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Atakan Benek
- Department of Biology, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu 37150, Türkiye
| | - Dilay Turu
- Department of Biology, Graduate School of Natural and Applied Science, Dokuz Eylül University, Izmir 35390, Türkiye
| | - Ergin Murat Altuner
- Department of Biology, Faculty of Science, Kastamonu University, Kastamonu 37150, Türkiye
| |
Collapse
|
4
|
Gill H, Sykes EME, Kumar A, Sorensen JL. Isolation of Bioactive Metabolites from Soil Derived Fungus-Aspergillus fumigatus. Microorganisms 2023; 11:microorganisms11030590. [PMID: 36985164 PMCID: PMC10053833 DOI: 10.3390/microorganisms11030590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fungi produce numerous secondary metabolites with intriguing biological properties for the health, industrial, and agricultural sectors. Herein, we report the high-yield isolation of phenolic natural products, N-formyl-4-hydroxyphenyl-acetamide 1 (~117 mg/L) and atraric acid 2 (~18 mg/L), from the ethyl acetate extract of the soil-derived fungus, Aspergillus fumigatus. The structures of compounds 1 and 2 were elucidated through the detailed spectroscopic analysis of NMR and LCMS data. These compounds were assayed for their antimicrobial activities. It was observed that compounds 1 and 2 exhibited strong inhibition against a series of fungal strains but only weak antibacterial properties against multi-drug-resistant strains. More significantly, this is the first known instance of the isolation of atraric acid 2 from a non-lichen fungal strain. We suggest the optimization of this fungal strain may exhibit elevated production of compounds 1 and 2, potentially rendering it a valuable source for the industrial-scale production of these natural antimicrobial compounds. Further investigation is necessary to establish the veracity of this hypothesis.
Collapse
Affiliation(s)
- Harman Gill
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - John L. Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
5
|
Topical Delivery of Atraric Acid Derived from Stereocaulon japonicum with Enhanced Skin Permeation and Hair Regrowth Activity for Androgenic Alopecia. Pharmaceutics 2023; 15:pharmaceutics15020340. [PMID: 36839662 PMCID: PMC9960134 DOI: 10.3390/pharmaceutics15020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Atraric acid (AA) is a phenolic compound isolated from Stereocaulon japonicum that has demonstrated anti-androgen properties and was used to design an alternative formulation for the treatment of alopecia. This new topical formulation was designed using a solvent mixture system composed of ethanol as a volatile vehicle, oleic acid as a permeation enhancer, and water for skin hydration. The ideal topical AA formulation (AA-TF#15) exhibited an 8.77-fold higher human skin flux and a 570% increase in dermal drug deposition, compared to 1% (w/w) AA in ethanol. In addition, compared to other formulations, AA-TF#15 (1% [w/w] AA) activated keratinocytes and human dermal papilla cell proliferation at a concentration of 50 µM AA, which is equivalent to 50 µM minoxidil. Moreover, AA-TF#15 treatment produced a significant increase in hair regrowth by 58.0% and 41.9% compared to the 1% (w/w) minoxidil and oral finasteride (1 mg/kg)-treated mice. In addition, AA-TF#15 showed a higher expression level of aldehyde dehydrogenase 1, β-catenin, cyclin D1, and pyruvate kinase M2 proteins in the skin of AA-TF#15-treated mice compared to that of those treated with minoxidil and oral finasteride. These findings suggest AA-TF#15 is an effective formulation for the treatment of scalp androgenic alopecia.
Collapse
|
6
|
Li J, Jiang S, Huang C, Yang X. Atraric Acid Ameliorates Hyperpigmentation through the Downregulation of the PKA/CREB/MITF Signaling Pathway. Int J Mol Sci 2022; 23:ijms232415952. [PMID: 36555593 PMCID: PMC9788525 DOI: 10.3390/ijms232415952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Atraric acid (AA) is derived from lichens and is widely used in perfumes for its desirable scent. It has been reported as having anti-inflammatory and antioxidant activity. Hyperpigmentation is the underlying cause of a variety of dermatological diseases that have a significant impact on patients' quality of life and are frequently difficult to treat. This study aimed to explore the inhibitory effects of AA on hyperpigmentation in vitro and in vivo and its potential molecular mechanisms. The cytological results revealed that at a dose of 250 μM, AA may reduce melanin content and tyrosinase levels without causing cytotoxicity. Furthermore, the expression of melanocortin-1 receptor (MC1R), phosphorylated protein kinase A (pPKA) and phosphorylated cAMP response element binding protein (pCREB) were downregulated in AA-administrated cells. In vivo, histological analysis showed that AA could inhibit melanin production and tyrosinase activity, and 3% AA had the best activity, with almost no side effects. Furthermore, the results of Western blot analysis and RT-PCR suggested that AA may suppress the mRNA transcription of microphthalmia-associated transcription factor (MITF) protein and tyrosine protease by decreasing the expression of MC1R, consequently decreasing the phosphorylation of PKA and CREB. Finally, the MC1R inhibitor MSG606 verified the hypothesis that AA suppresses melanin formation by downregulating the PKA/CREB/MITF signaling pathway. Taken together, our study offers valuable information for the development of AA as a possible ingredient in skin-lightening cosmeceuticals and hyperpigmentation inhibitors.
Collapse
|
7
|
Karagöz Y, Öztürk Karagöz B. Lichens in Pharmacological Action: What Happened in the Last Decade? Eurasian J Med 2022; 54:195-208. [PMID: 36655467 PMCID: PMC11163341 DOI: 10.5152/eurasianjmed.2022.22335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023] Open
Abstract
Lichens are a unique group of organisms, which can produce compounds that are named secondary metabolites and rarely or are not produced in other organisms. Lichens possess pharmacological actions related to their secondary metabolites. Our knowledge of lichens and their pharmacological actions rapidly increases as new technologies and devices, which facilitate the investigation of the chemical profile and biological activities of lichens, are introduced and become more readily available. In addition, new methods and perspectives, as well as suggestions for pharmacological mechanisms, accumulate daily. Furthermore, lichen substances stand as a relatively untapped source of natural products. Accordingly, researchers investigate the pharmacological actions of lichen-derived material more frequently than it was in the past. This review focused on the pharmacological activities of lichens published in the last 11 years (2012-2022). Literature data obtained from WebOfScience and PubMed databases using related search keywords revealed that anti-genotoxicity, anticancer, and anti-microbial activity studies have constantly been conducted. More recently, immunomodulatory and inflammation-related studies took to the stage. Enzyme inhibition actions were popular as well. Our selection was based on the novelty and mechanistic insight that papers presented.
Collapse
Affiliation(s)
- Yalçın Karagöz
- Department of Pharmaceutical Botany, Ağrı İbrahim Çeçen University Faculty of Pharmacy, Ağrı, Turkey
| | - Berna Öztürk Karagöz
- Department of Pharmacology, Ağrı İbrahim Çeçen University Faculty of Pharmacy, Ağrı, Turkey
| |
Collapse
|
8
|
Adenubi OT, Famuyide IM, McGaw LJ, Eloff JN. Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115657. [PMID: 36007717 DOI: 10.1016/j.jep.2022.115657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lichens, a unique symbiotic association between an alga/cyanobacterium and a fungus, produce secondary metabolites that are a promising source of novel drug leads. The beauty and importance of lichens have not been adequately explored despite their manifold biological activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, analgesic, antipyretic and antiparasitic. AIM OF THE STUDY The present review collates and discusses the available knowledge on secondary metabolites and biological activities of lichens (in vitro and in vivo). MATERIALS AND METHODS Using relevant keywords (lichens, secondary metabolites, bioactivity, pharmacological activities), five electronic databases, namely ScienceDirect, PubMed, Google Scholar, Scopus and Recent Literature on Lichens, were searched for past and current scientific contributions up until May 2022. Literature focusing broadly on the bioactivity of lichens including their secondary metabolites were identified and summarized. RESULTS A total of 50 review articles and 189 research articles were searched. Information related to antioxidant, antimicrobial, anti-inflammatory, anticancer and insecticidal activities of 90 lichen species (from 13 families) and 12 isolated metabolites are reported. Over 90% of the studies comprised in vitro investigations, such as bioassays evaluating radical scavenging properties, lipid peroxidation inhibition and reducing power, cytotoxicity and antimicrobial bioassays of lichen species and constituents. In vivo studies were scarce and available only in fish and rats. Most of the studies were done by research groups in Brazil, France, Serbia, India and Turkey. There were relatively few reports from Asia and Africa despite the ubiquitous nature of lichens and the high occurrence in these continents. CONCLUSION Secondary metabolites from lichens are worthy of further investigation in terms of their potential therapeutic applicability, including better understanding of their mechanism(s) of action. This would be of great importance in the search for novel drugs.
Collapse
Affiliation(s)
- Olubukola Tolulope Adenubi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | - Ibukun Michael Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Jacobus Nicolaas Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
9
|
Anti-Inflammatory Effects of Phlebia sp. Extract in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2717196. [PMID: 35872858 PMCID: PMC9303134 DOI: 10.1155/2022/2717196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Lichens are a life form in which algae and fungi have a symbiotic relationship and have various biological activities, including anti-inflammatory and antiproliferative activities. This is the first study to investigate the anti-inflammatory activity of a Phlebia sp. fungal extract (PSE) isolated from Peltigera neopolydactyla in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophage. PSE reduced the production of the proinflammatory cytokine (tumor necrosis factor-α, interleukin-6, and interleukin-1β), chemokine (granulocyte-macrophage colony-stimulating factor), nitric oxide, and prostaglandin E2 in the LPS-stimulated RAW264.7 macrophages. Especially, PSE inhibits the phosphorylation of activator protein-1 (AP-1) signaling (c-Fos and c-Jun) and their upstream mitogen-activated protein kinase kinases/mitogen-activated protein kinases (MKK/MAPKs: MKK4, MKK7, and JNK) and finally reduced the production of the inflammatory cytokines. The inhibitory effects mainly act via suppressing JNK-mediated AP-1 rather than the NF-κB pathway. Furthermore, PSE inhibited the production of final inflammatory effector molecules involved in AP-1 signaling, including nitric oxide (NO) and prostaglandin E2 (PGE2). Here, we report that PSE has the potential to be developed as an anti-inflammatory agent.
Collapse
|
10
|
Della Greca M, Mendili M, Khadhri A, Ben Jemâa JM, Andolfi A, Tufano I, Aschi-smiti S. Anti‐Inflammatory Potential of Compounds Isolated from Tunisian Lichens Species. Chem Biodivers 2022; 19:e202200134. [DOI: 10.1002/cbdv.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marina Della Greca
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences Complesso Univ. Mt. S. Angelovia Cintia, 4 80126 Napoli ITALY
| | - Mohamed Mendili
- University of Tunis El Manar: Universite de Tunis El Manar Sciences, Plant, Soil, Environment Interaction Laboratory Campus Academia Tunis TUNISIA
| | - Ayda Khadhri
- University of Tunis El Manar: Universite de Tunis El Manar Faculty of Sciences, Plant, Soil, Environment Interactions Laboratory Campus Academia Tunis TUNISIA
| | - Jouda Mediouni Ben Jemâa
- National Agricultural Research Institute Laboratory of Biotechnology Applied to Agriculture Rue Hedi Karray, El-Menzah Tunis TUNISIA
| | - Anna Andolfi
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences via Cinthia Naples ITALY
| | - Immacolata Tufano
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences via Cinthia Naples ITALY
| | - Samira Aschi-smiti
- University of Tunis El Manar: Universite de Tunis El Manar Sciences, Plant, Soil, Environment Interaction Laboratory Campus Academia Tunis TUNISIA
| |
Collapse
|
11
|
Duarte-Casar R, Romero-Benavides JC. Xylosma G. Forst. Genus: Medicinal and Veterinary Use, Phytochemical Composition, and Biological Activity. PLANTS 2022; 11:plants11091252. [PMID: 35567253 PMCID: PMC9103172 DOI: 10.3390/plants11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Xylosma G. Forst. is a genus of plants belonging to the Salicaceae family with intertropical distribution in America, Asia, and Oceania. Of the 100 accepted species, 22 are under some level of conservation risk. In this review, around 13 species of the genus used as medicinal plants were found, mainly in Central and South America, with a variety of uses, among which antimicrobial is the most common. There is published research in chemistry and pharmacological activity on around 15 of the genus species, centering in their antibacterial and fungicidal activity. Additionally, a variety of active phytochemicals have been isolated, the most representative of which are atraric acid, xylosmine and its derivatives, and velutinic acid. There is still ample field for the validation and evaluation of the activity of Xylosma extracts, particularly in species not yet studied, and concerning uses other than antimicrobial and for the identification and evaluation of their active compounds.
Collapse
Affiliation(s)
- Rodrigo Duarte-Casar
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
- Correspondence: ; Tel.: +593-987708487
| |
Collapse
|
12
|
Du P, Song J, Qiu H, Liu H, Zhang L, Zhou J, Jiang S, Liu J, Zheng Y, Wang M. Polyphenols Extracted from Shanxi-Aged Vinegar Inhibit Inflammation in LPS-Induced RAW264.7 Macrophages and ICR Mice via the Suppression of MAPK/NF-κB Pathway Activation. Molecules 2021; 26:molecules26092745. [PMID: 34067016 PMCID: PMC8124351 DOI: 10.3390/molecules26092745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Shanxi-aged vinegar, a traditional Chinese grain-fermented food that is rich in polyphenols, has been shown to have therapeutic effects on a variety of diseases. However, there has been no comprehensive evaluation of the anti-inflammatory activity of polyphenols extracted from Shanxi-aged vinegar (SAVEP) to date. The anti-inflammatory activities of SAVEP, both in RAW 264.7 macrophages and mice, were extensively investigated for the potential application of SAVEP as a novel anti-inflammatory agent. In order to confirm the notion that polyphenols could improve inflammatory symptoms, SAVEP was firstly detected by gas chromatography mass spectrometry (GC-MS). In total, 19 polyphenols were detected, including 12 phenolic acids. The study further investigated the protective effect of SAVEP on lipopolysaccharide-induced inflammation in RAW264.7 macrophages and ICR mice. The results showed that compared with those of the model group, SAVEP could remarkably recover the inflammation of macrophage RAW264.7 and ICR mice. SAVEP can normalise the expression of related proteins via the suppression of MAPK/NF-κB pathway activation, inhibiting the expression of iNOS and COX-2 proteins, and consequently the production of inflammatory factors, thus alleviating inflammatory stress. These results suggest that SAVEP may have a potential function against inflammation.
Collapse
Affiliation(s)
- Peng Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Huirui Qiu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haorui Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Li Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Junhan Zhou
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Shengping Jiang
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Jinyu Liu
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| |
Collapse
|
13
|
Liu R, Kim W, Paguirigan JA, Jeong MH, Hur JS. Establishment of Agrobacterium tumefaciens-Mediated Transformation of Cladonia macilenta, a Model Lichen-Forming Fungus. J Fungi (Basel) 2021; 7:252. [PMID: 33810561 PMCID: PMC8065847 DOI: 10.3390/jof7040252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Despite the fascinating biology of lichens, such as the symbiotic association of lichen-forming fungi (mycobiont) with their photosynthetic partners and their ability to grow in harsh habitats, lack of genetic tools manipulating mycobiont has hindered studies on genetic mechanisms underpinning lichen biology. Thus, we established an Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic transformation of a mycobiont isolated from Cladonia macilenta. A set of combinations of ATMT conditions, such as input biomass of mycobiont, co-cultivation period with Agrobacterium cells, and incubation temperature, were tested to identify an optimized ATMT condition for the C. macilenta mycobiont. As a result, more than 10 days of co-cultivation period and at least 2 mg of input biomass of the mycobiont were recommended for an efficient ATMT, owing to extremely slow growth rate of mycobionts in general. Moreover, we examined T-DNA copy number variation in a total of 180 transformants and found that 88% of the transformants had a single copy T-DNA insertion. To identify precise T-DNA insertion sites that interrupt gene function in C. macilenta, we performed TAIL-PCR analyses for selected transformants. A hypothetical gene encoding ankyrin repeats at its C-terminus was interrupted by T-DNA insertion in a transformant producing dark-brown colored pigment. Although the identification of the pigment awaits further investigation, this proof-of-concept study demonstrated the feasibility of use of ATMT in construction of a random T-DNA insertion mutant library in mycobionts for studying genetic mechanisms behind the lichen symbiosis, stress tolerance, and secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| | - Jaycee Augusto Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| |
Collapse
|