1
|
Huang S, Zeng Y, Guo Q, Zou T, Yin ZQ. Small extracellular vesicles of organoid-derived human retinal stem cells remodel Müller cell fate via miRNA: A novel remedy for retinal degeneration. J Control Release 2024; 370:405-420. [PMID: 38663753 DOI: 10.1016/j.jconrel.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Remodeling retinal Müller glial fate, including gliosis inhibition and pro-reprogramming, represents a crucial avenue for treating degenerative retinal diseases. Stem cell transplantation exerts effects on modulating retinal Müller glial fate. However, the optimized stem cell products and the underlying therapeutic mechanisms need to be investigated. In the present study, we found that retinal progenitor cells from human embryonic stem cell-derived retinal organoids (hERO-RPCs) transferred extracellular vesicles (EVs) into Müller cells following subretinal transplantation into RCS rats. Small EVs from hERO-RPCs (hERO-RPC-sEVs) were collected and were found to delay photoreceptor degeneration and protect retinal function in RCS rats. hERO-RPC-sEVs were taken up by Müller cells both in vivo and in vitro, and inhibited gliosis while promoting early dedifferentiation of Müller cells. We further explored the miRNA profiles of hERO-RPC-sEVs, which suggested a functional signature associated with neuroprotection and development, as well as the regulation of stem cell and glial fate. Mechanistically, hERO-RPC-sEVs might regulate the fate of Müller cells by miRNA-mediated nuclear factor I transcription factors B (NFIB) downregulation. Collectively, our findings offer novel mechanistic insights into stem cell therapy and promote the development of EV-centered therapeutic strategies.
Collapse
Affiliation(s)
- Shudong Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiang Guo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China; Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
2
|
Martínez-Vacas A, Di Pierdomenico J, Gómez-Ramirez AM, Vidal-Sanz M, Villegas-Pérez MP, García-Ayuso D. Dose-Related Side Effects of Intravitreal Injections of Humanized Anti-Vascular Endothelial Growth Factor in Rats: Glial Cell Reactivity and Retinal Ganglion Cell Loss. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38573620 PMCID: PMC10996988 DOI: 10.1167/iovs.65.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose In a previous study, we documented that the Intravitreal injections (IVIs) of bevacizumab in rats caused a retinal inflammatory response. We now study whether the IVI of other humanized anti-VEGF: ranibizumab and aflibercept also cause an inflammatory reaction in the rat retina and if it depends on the dose administered. Finally, we study whether this reaction affects retinal ganglion cell (RGC) survival. Methods Albino Sprague-Dawley rats received a single IVI of 5 µL of PBS or ranibizumab or aflibercept at the concentration used in clinical practice (10 µg/µL or 40 µg/µL) or at a lower concentration (0.38 µg/µL and 1.5 µg/µL) calculated to obtain within the rat eye the same concentration as in the human eye in clinical practice. Others received a single 5 µL IVI of a polyclonal goat anti-rat VEGF (0.015 µg/µL) or of vehicle (PBS). Animals were processed 7 days or 1 month later. Retinal whole mounts were immunolabeled for the detection of microglial, macroglial, RGCs, and intrinsically photosensitive RGCs (ipRGCs). Fluorescence and confocal microscopy were used to examine retinal changes, and RGCs and ipRGCs were quantified automatically or semiautomatically, respectively. Results All the injected substances including the PBS induced detectable side effects, namely, retinal microglial cell activation and retinal astrocyte hypertrophy. However, there was a greater microglial and macroglial response when the higher concentrations of ranibizumab and aflibercept were injected than when PBS, the antibody anti-rat VEGF and the lower concentrations of ranibizumab or aflibercept were injected. The higher concentration of ranibizumab and aflibercept resulted also in significant RGC death, but did not cause appreciable ipRGC death. Conclusions The IVI of all the substances had some retinal inflammatory effects. The IVI of humanized anti-VEGF to rats at high doses cause important side effects: severe inflammation and RGC death, but not ipRGC death.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Ana María Gómez-Ramirez
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - María P. Villegas-Pérez
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| |
Collapse
|
3
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
4
|
Yao Y, Li J, Zhou Y, Wang S, Zhang Z, Jiang Q, Li K. Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1276225. [PMID: 37842315 PMCID: PMC10569308 DOI: 10.3389/fendo.2023.1276225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages/microglia are immune system defense and homeostatic cells that develop from bone marrow progenitor cells. According to the different phenotypes and immune responses of macrophages (Th1 and Th2), the two primary categories of polarized macrophages/microglia are those conventionally activated (M1) and alternatively activated (M2). Macrophage/microglial polarization is a key regulating factor in the development of inflammatory disorders, cancers, metabolic disturbances, and neural degeneration. Macrophage/microglial polarization is involved in inflammation, oxidative stress, pathological angiogenesis, and tissue healing processes in ocular diseases, particularly in diabetic retinopathy (DR). The functional phenotypes of macrophages/microglia affect disease progression and prognosis, and thus regulate the polarization or functional phenotype of microglia at different DR stages, which may offer new concepts for individualized therapy of DR. This review summarizes the involvement of macrophage/microglia polarization in physiological situations and in the pathological process of DR, and discusses the promising role of polarization in personalized treatment of DR.
Collapse
Affiliation(s)
- Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiajun Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yunfan Zhou
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ziran Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Mishra D, Gade S, Pathak V, Vora LK, Mcloughlin K, Medina R, Donnelly RF, Raghu Raj Singh T. Ocular application of electrospun materials for drug delivery and cellular therapies. Drug Discov Today 2023; 28:103676. [PMID: 37343817 DOI: 10.1016/j.drudis.2023.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The constraints of delivering conventional drugs, biologics and cell-based therapeutics to target ocular sites necessitate the fabrication of novel drug delivery systems to treat diverse ocular diseases. Conventional ocular drug delivery approaches are prone to low bioavailability, poor penetration and degradation of therapeutics, including cell-based therapies, leading to the need for frequent topical applications or intraocular injections. However, owing to their exceptional structural properties, nanofibrous and microfibrous electrospun materials have gained significant interest in ocular drug delivery and biomaterial applications. This review covers the recent developments of electrospun fibers for the delivery of drugs, biologics, cells, growth factors and tissue regeneration in treating ocular diseases. The insights from this review can provide a thorough understanding of the selection of materials for the fabrication of nano- and/or micro-fibrous systems for ocular applications, with a particular interest in achieving controlled drug release and cell therapy. A detailed modality for fabricating different types of nano- and micro-fibers produced from electrospinning and factors influencing generation are also discussed.
Collapse
Affiliation(s)
- Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Shilpkala Gade
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Varun Pathak
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Kiran Mcloughlin
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Reinhold Medina
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
6
|
Duan H, Song W, Guo J, Yan W. Taurine: A Source and Application for the Relief of Visual Fatigue. Nutrients 2023; 15:nu15081843. [PMID: 37111062 PMCID: PMC10142897 DOI: 10.3390/nu15081843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
According to reports, supplementation with appropriate doses of taurine may help to reduce visual fatigue. Presently, some progress has been made in research related to taurine in eye health, but the lack of systematic summaries has led to the neglect of its application in the relief of visual fatigue. This paper, therefore, provides a systematic review of the sources of taurine, including the endogenous metabolic and exogenous dietary pathways, as well as a detailed review of the distribution and production of exogenous taurine. The physiological mechanisms underlying the production of visual fatigue are summarized and the research progress of taurine in relieving visual fatigue is reviewed, including the safety of consumption and the mechanism of action in relieving visual fatigue, in order to provide some reference basis and inspiration for the development and application of taurine in functional foods for relieving visual fatigue.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wei Song
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
7
|
Li G, Liu S, Chen W, Jiang Z, Luo Y, Wang D, Zheng Y, Liu Y. Acellularized Uvea Hydrogel as Novel Injectable Platform for Cell-Based Delivering Treatment of Retinal Degeneration and Optimizing Retinal Organoids Inducible System. Adv Healthc Mater 2022; 11:e2202114. [PMID: 36189847 DOI: 10.1002/adhm.202202114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Replenishing the retina with retinal pigment epithelial (RPE) cells derived from pluripotent stem cells (PSCs) has great promise for treating retinal degenerative diseases, but it is limited by poor cell survival and integration in vivo. Herein, porcine acellular sclera and uvea extracellular matrix (ECM) and their counterpart hydrogels are developed, and their effects on the biological behavior of human induced pluripotent stem cell (hiPSC)-derived RPE cells (hiPSC-RPE) and embryoid body (hiPSC-EB) differentiation are investigated. Both acellular ECM hydrogels have excellent biocompatibility and suitable biodegradability without evoking an obvious immune response. Most importantly, the decellularized uvea hydrogel-delivered cells' injection remarkably promotes the hiPSC-RPE cells' survival and integration in the subretinal space, rescues the photoreceptor cells' death and retinal gliosis, and restores vision in rats with retinal degeneration for a long duration. In addition, medium supplementation with decellularized uvea peptides promotes hiPSC-EBs onset morphogenesis and neural/retinal differentiation, forming layered retinal organoids. This study demonstrates that ECM hydrogel-delivered hiPSC-RPE cells' injection may be a useful approach for treating retinal degeneration disease, combined with an optimized retinal seeding cells' induction program, which has potential for clinical application.
Collapse
Affiliation(s)
- Guilan Li
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Wenfei Chen
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Zhijian Jiang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yuanting Luo
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
| | - Yingfeng Zheng
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yizhi Liu
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
8
|
Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol 2022; 57:102506. [PMID: 36270186 PMCID: PMC9583577 DOI: 10.1016/j.redox.2022.102506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Serge Picaud
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain.
| |
Collapse
|
9
|
Immune recognition of syngeneic, allogeneic and xenogeneic stromal cell transplants in healthy retinas. STEM CELL RESEARCH & THERAPY 2022; 13:430. [PMID: 35987845 PMCID: PMC9392272 DOI: 10.1186/s13287-022-03129-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Background Advanced therapies using adult mesenchymal stromal cells (MSCs) for neurodegenerative diseases are not effectively translated into the clinic. The cross talk between the transplanted cells and the host tissue is something that, despite its importance, is not being systematically investigated. Methods We have compared the response of the mouse healthy retina to the intravitreal transplantation of MSCs derived from the bone marrow in four modalities: syngeneic, allogeneic, xenogeneic and allogeneic with immunosuppression using functional analysis in vivo and histology, cytometry and protein measurement post-mortem. Data were considered significant (p < 0.05) after nonparametric suitable statistical tests. Results Transplanted cells remain in the vitreous and are cleared by microglial cells a process that is quicker in allotransplants regardless of immunosuppression. All transplants cause anatomical remodelling which is more severe after xenotransplants. Xeno- and allotransplants with or without immunosuppression cause macro- and microglial activation and retinal functional impairment, being xenotransplants the most detrimental and the only ones that recruit CD45+Iba1−cells. The profile of proinflammatory cytokines changes in all transplantation settings. However, none of these changes affect the retinal ganglion cell population. Conclusions We show here a specific functional and anatomical retinal response depending on the MSC transplantation modality, an aspect that should be taken into consideration when conducting preclinical studies if we intend a more realistic translation into clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03129-y.
Collapse
|
10
|
Drinking hydrogen water improves photoreceptor structure and function in retinal degeneration 6 mice. Sci Rep 2022; 12:13610. [PMID: 35948585 PMCID: PMC9365798 DOI: 10.1038/s41598-022-17903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinal disorders involving the progressive dysfunction of photoreceptors and the retinal pigment epithelium, for which there is currently no treatment. The rd6 mouse is a natural model of autosomal recessive retinal degeneration. Given the known contributions of oxidative stress caused by reactive oxygen species (ROS) and selective inhibition of potent ROS peroxynitrite and OH·by H2 gas we have previously demonstrated, we hypothesized that ingestion of H2 water may delay the progression of photoreceptor death in rd6 mice. H2 mice showed significantly higher retinal thickness as compared to controls on optical coherence tomography. Histopathological and morphometric analyses revealed higher thickness of the outer nuclear layer for H2 mice than controls, as well as higher counts of opsin red/green-positive cells. RNA sequencing (RNA-seq) analysis of differentially expressed genes in the H2 group versus control group revealed 1996 genes with significantly different expressions. Gene and pathway ontology analysis showed substantial upregulation of genes responsible for phototransduction in H2 mice. Our results show that drinking water high in H2 (1.2-1.6 ppm) had neuroprotective effects and inhibited photoreceptor death in mice, and suggest the potential of H2 for the treatment of RP.
Collapse
|
11
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
12
|
Di Pierdomenico J, Gallego‐Ortega A, Martínez‐Vacas A, García‐Bernal D, Vidal‐Sanz M, Villegas‐Pérez MP, García‐Ayuso D. Intravitreal and subretinal syngeneic bone marrow mononuclear stem cell transplantation improves photoreceptor survival but does not ameliorate retinal function in two rat models of retinal degeneration. Acta Ophthalmol 2022; 100:e1313-e1331. [PMID: 35514078 DOI: 10.1111/aos.15165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To study and compare effects of syngeneic bone marrow mononuclear stem cells (BM-MNCs) transplants on inherited retinal degeneration in two animal models with different etiologies: the RCS and the P23H-1 rats. To compare the safety and efficacy of two methods of intraocular delivery: subretinal and/or intravitreal. METHODS A suspension of BM-MNCs was injected subretinally or intravitreally in the left eyes of P23H-1 and RCS rats at post-natal day (P) 21. At different survival intervals after the injection: 7, 15, 30 or 60 days, the retinas were cross-sectioned, and photoreceptor survival and glial cell responses were investigated using immunodetection of cones (anti-cone arrestin), synaptic connections (anti-bassoon), microglia (anti-Iba-1), astrocytes and Müller cells (anti-GFAP). Electroretinographic function was also assessed longitudinally. RESULTS Intravitreal injections (IVIs) or subretinal injections (SRIs) of BM-MNCs did not produce adverse effects. The transplanted cells survived for up to 15 days but did not penetrate the retina. Both IVIs and SRIs increased photoreceptor survival, decreased synaptic degeneration and glial fibrillary acidic protein (GFAP) expression in Müller cells but did not modify microglial cell activation and migration or the electroretinographic responses. CONCLUSIONS Intravitreal and subretinal syngeneic BM-MNCs transplantation decreases photoreceptor degeneration and shows anti-gliotic effects on Müller cells but does not ameliorate retinal function. Moreover, syngeneic BM-MNCs transplants are more effective than the xenotransplants of these cells. BM-MNC transplantation has potential therapeutic effects that merit further investigation.
Collapse
Affiliation(s)
- Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Alejandro Gallego‐Ortega
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Ana Martínez‐Vacas
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - David García‐Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Facultad de Medicina Universidad de Murcia Murcia Spain
| | - Manuel Vidal‐Sanz
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - María P. Villegas‐Pérez
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| | - Diego García‐Ayuso
- Departamento de Oftalmología, Facultad de Medicina Universidad de Murcia Murcia Spain
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB‐Virgen de la Arrixaca) Murcia Spain
| |
Collapse
|
13
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
14
|
Martínez-Vacas A, Di Pierdomenico J, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. Int J Mol Sci 2021; 23:346. [PMID: 35008772 PMCID: PMC8745531 DOI: 10.3390/ijms23010346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to β-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% β-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| |
Collapse
|