1
|
López-Gómez J, Villarreal L, Andrés M, Ponte I, Xicoy B, Zamora L, Vilaseca M, Roque A. Quantification of Histone H1 Subtypes Using Targeted Proteomics. Biomolecules 2024; 14:1221. [PMID: 39456154 PMCID: PMC11506705 DOI: 10.3390/biom14101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Histone H1 is involved in the regulation of chromatin structure. Human somatic cells express up to seven subtypes. The variability in the proportions of somatic H1s (H1 complement) is one piece of evidence supporting their functional specificity. Alterations in the protein levels of different H1 subtypes have been observed in cancer, suggesting their potential as biomarkers and that they might play a role in disease development. We have developed a mass spectrometry-based (MS) parallel reaction monitoring (PRM) assay suitable for the quantification of H1 subtypes. Our PRM method is based on the quantification of unique peptides for each subtype, providing high specificity. Evaluation of the PRM performance on three human cell lines, HeLa, K562, and T47D, showed high reproducibility and sensitivity. Quantification values agreed with the electrophoretic and Western blot data, indicating the accuracy of the method. We used PRM to quantify the H1 complement in peripheral blood samples of healthy individuals and chronic myeloid leukemia (CML) patients. In CML, the first line of therapy is a tyrosine kinase inhibitor, imatinib. Our preliminary data revealed differences in the H1 complement in CML patients between imatinib responders and non-responders. These results support further research to determine if the H1 content or subtype composition could help predict imatinib response.
Collapse
MESH Headings
- Humans
- Proteomics/methods
- Histones/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- HeLa Cells
- Mass Spectrometry/methods
- K562 Cells
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Jordi López-Gómez
- Biochemistry and Molecular Biology Department, Biosciences Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (J.L.-G.); (M.A.); (I.P.)
| | - Laura Villarreal
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; (L.V.); (M.V.)
- The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Marta Andrés
- Biochemistry and Molecular Biology Department, Biosciences Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (J.L.-G.); (M.A.); (I.P.)
| | - Inma Ponte
- Biochemistry and Molecular Biology Department, Biosciences Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (J.L.-G.); (M.A.); (I.P.)
| | - Blanca Xicoy
- Hematology Service, Catalan Institute of Oncology-Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute, Autonomous University of Barcelona, 08025 Barcelona, Spain; (B.X.); (L.Z.)
| | - Lurdes Zamora
- Hematology Service, Catalan Institute of Oncology-Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute, Autonomous University of Barcelona, 08025 Barcelona, Spain; (B.X.); (L.Z.)
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; (L.V.); (M.V.)
- The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alicia Roque
- Biochemistry and Molecular Biology Department, Biosciences Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (J.L.-G.); (M.A.); (I.P.)
| |
Collapse
|
2
|
Kumar A, Maurya P, Hayes JJ. Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease. Int J Mol Sci 2023; 24:ijms24021463. [PMID: 36674981 PMCID: PMC9860689 DOI: 10.3390/ijms24021463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Linker histones (LH) are a critical component of chromatin in addition to the canonical histones (H2A, H2B, H3, and H4). In humans, 11 subtypes (7 somatic and 4 germinal) of linker histones have been identified, and their diverse cellular functions in chromatin structure, DNA replication, DNA repair, transcription, and apoptosis have been explored, especially for the somatic subtypes. Delineating the unique role of human linker histone (hLH) and their subtypes is highly tedious given their high homology and overlapping expression patterns. However, recent advancements in mass spectrometry combined with HPLC have helped in identifying the post-translational modifications (PTMs) found on the different LH subtypes. However, while a number of PTMs have been identified and their potential nuclear and non-nuclear functions explored in cellular processes, there are very few studies delineating the direct relevance of these PTMs in diseases. In addition, recent whole-genome sequencing of clinical samples from cancer patients and individuals afflicted with Rahman syndrome have identified high-frequency mutations and therefore broadened the perspective of the linker histone mutations in diseases. In this review, we compile the identified PTMs of hLH subtypes, current knowledge of the relevance of hLH PTMs in human diseases, and the correlation of PTMs coinciding with mutations mapped in diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
- Correspondence:
| | - Preeti Maurya
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642, USA
| | - Jeffrey J. Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
3
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
4
|
HMGA1 Regulates the Expression of Replication-Dependent Histone Genes and Cell-Cycle in Breast Cancer Cells. Int J Mol Sci 2022; 24:ijms24010594. [PMID: 36614035 PMCID: PMC9820469 DOI: 10.3390/ijms24010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression. We explored the role of HMGA1 in modulating the RD-HIST genes expression in TNBC cells and show that MDA-MB-231 cells, depleted of HMGA1, express low levels of core histones. We show that HMGA1 participates in the activation of the HIST1H4H promoter and that it interacts with the nuclear protein of the ataxia-telangiectasia mutated locus (NPAT), the coordinator of the transcription of the RD-HIST genes. Moreover, we demonstrate that HMGA1 silencing increases the percentage of cells in G0/G1 phase both in TNBC and epirubicin resistant TNBC cells. Moreover, HMGA1 silencing causes an increase in epirubicin IC50 both in parental and epirubicin resistant cells thus suggesting that targeting HMGA1 could affect the efficacy of epirubicin treatment.
Collapse
|
5
|
Robusti G, Vai A, Bonaldi T, Noberini R. Investigating pathological epigenetic aberrations by epi-proteomics. Clin Epigenetics 2022; 14:145. [PMID: 36371348 PMCID: PMC9652867 DOI: 10.1186/s13148-022-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetics includes a complex set of processes that alter gene activity without modifying the DNA sequence, which ultimately determines how the genetic information common to all the cells of an organism is used to generate different cell types. Dysregulation in the deposition and maintenance of epigenetic features, which include histone posttranslational modifications (PTMs) and histone variants, can result in the inappropriate expression or silencing of genes, often leading to diseased states, including cancer. The investigation of histone PTMs and variants in the context of clinical samples has highlighted their importance as biomarkers for patient stratification and as key players in aberrant epigenetic mechanisms potentially targetable for therapy. Mass spectrometry (MS) has emerged as the most powerful and versatile tool for the comprehensive, unbiased and quantitative analysis of histone proteoforms. In recent years, these approaches-which we refer to as "epi-proteomics"-have demonstrated their usefulness for the investigation of epigenetic mechanisms in pathological conditions, offering a number of advantages compared with the antibody-based methods traditionally used to profile clinical samples. In this review article, we will provide a critical overview of the MS-based approaches that can be employed to study histone PTMs and variants in clinical samples, with a strong focus on the latest advances in this area, such as the analysis of uncommon modifications and the integration of epi-proteomics data into multi-OMICs approaches, as well as the challenges to be addressed to fully exploit the potential of this novel field of research.
Collapse
Affiliation(s)
- Giulia Robusti
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Alessandro Vai
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Tiziana Bonaldi
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberta Noberini
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
6
|
Saha A, Dalal Y. A glitch in the snitch: the role of linker histone H1 in shaping the epigenome in normal and diseased cells. Open Biol 2021; 11:210124. [PMID: 34343462 PMCID: PMC8331230 DOI: 10.1098/rsob.210124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone H1s or the linker histones are a family of dynamic chromatin compacting proteins that are essential for higher-order chromatin organization. These highly positively charged proteins were previously thought to function solely as repressors of transcription. However, over the last decade, there is a growing interest in understanding this multi-protein family, finding that not all variants act as repressors. Indeed, the H1 family members appear to have distinct affinities for chromatin and may potentially affect distinct functions. This would suggest a more nuanced contribution of H1 to chromatin organization. The advent of new technologies to probe H1 dynamics in vivo, combined with powerful computational biology, and in vitro imaging tools have greatly enhanced our knowledge of the mechanisms by which H1 interacts with chromatin. This family of proteins can be metaphorically compared to the Golden Snitch from the Harry Potter series, buzzing on and off several regions of the chromatin, in combat with competing transcription factors and chromatin remodellers, thereby critical to the epigenetic endgame on short and long temporal scales in the life of the nucleus. Here, we summarize recent efforts spanning structural, computational, genomic and genetic experiments which examine the linker histone as an unseen architect of chromatin fibre in normal and diseased cells and explore unanswered fundamental questions in the field.
Collapse
Affiliation(s)
- Ankita Saha
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Noberini R, Savoia EO, Brandini S, Greco F, Marra F, Bertalot G, Pruneri G, McDonnell LA, Bonaldi T. Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples. Clin Epigenetics 2021; 13:145. [PMID: 34315505 PMCID: PMC8317427 DOI: 10.1186/s13148-021-01120-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Increasing evidence linking epigenetic mechanisms and different diseases, including cancer, has prompted in the last 15 years the investigation of histone post-translational modifications (PTMs) in clinical samples. Methods allowing the isolation of histones from patient samples followed by the accurate and comprehensive quantification of their PTMs by mass spectrometry (MS) have been developed. However, the applicability of these methods is limited by the requirement for substantial amounts of material. RESULTS To address this issue, in this study we streamlined the protein extraction procedure from low-amount clinical samples and tested and implemented different in-gel digestion strategies, obtaining a protocol that allows the MS-based analysis of the most common histone PTMs from laser microdissected tissue areas containing as low as 1000 cells, an amount approximately 500 times lower than what is required by available methods. We then applied this protocol to breast cancer patient laser microdissected tissues in two proof-of-concept experiments, identifying differences in histone marks in heterogeneous regions selected by either morphological evaluation or MALDI MS imaging. CONCLUSIONS These results demonstrate that analyzing histone PTMs from very small tissue areas and detecting differences from adjacent tumor regions is technically feasible. Our method opens the way for spatial epi-proteomics, namely the investigation of epigenetic features in the context of tissue and tumor heterogeneity, which will be instrumental for the identification of novel epigenetic biomarkers and aberrant epigenetic mechanisms.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Evelyn Oliva Savoia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Brandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Greco
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy
- Fondazione Pisana Per La Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy
| | - Francesca Marra
- Department of Pathology, Fondazione IRCCS-Istituto Nazionale Tumori, Milan, Italy
| | - Giovanni Bertalot
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology, Fondazione IRCCS-Istituto Nazionale Tumori, Milan, Italy
| | - Liam A McDonnell
- Fondazione Pisana Per La Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
8
|
Noberini R, Robusti G, Bonaldi T. Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J 2021; 289:1191-1213. [PMID: 33415821 PMCID: PMC9291046 DOI: 10.1111/febs.15707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
In the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants. MS has been extensively used for the analysis of epigenetic marks in cell lines and animal tissue and, thanks to recent technological advances, is now ready to be applied also to clinical samples. In this review, we will provide an overview on the quantitative MS-based analysis of histones, their PTMs and their variants in cancer clinical samples, highlighting current achievements and future perspectives for this novel field of research. Among the different MS-based approaches currently available for histone PTM profiling, we will focus on the 'bottom-up' strategy, namely the analysis of short proteolytic peptides, as it has been already successfully employed for the analysis of clinical samples.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|