1
|
Xia B, Qiu L, Yue J, Si J, Zhang H. The metabolic crosstalk of cancer-associated fibroblasts and tumor cells: Recent advances and future perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189190. [PMID: 39341468 DOI: 10.1016/j.bbcan.2024.189190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Tumor cells grow in a microenvironment with a lack of nutrients and oxygen. Cancer-associated fibroblasts (CAFs) as one major component of tumor microenvironment have strong ability to survive under stressful conditions through metabolic remodelling. Furthermore, CAFs are educated by tumor cells and help them adapt to the hostile microenvironment through their metabolic communication. By inducing catabolism, CAFs release nutrients into the microenvironment which are taken up by tumor cells to satisfy their metabolic requirements. Furthermore, CAFs can recycle toxic metabolic wastes produced by cancer cells into energetic substances, allowing cancer cells to undergo biosynthesis. Their metabolic crosstalk also enhances CAFs' pro-tumor phenotype and reshape the microenvironment facilitating tumor cells' metastasis and immune escape. In this review, we have analyzed the effect and mechanisms of metabolic crosstalk between tumor cells and CAFs. We also analyzed the future perspectives in this area from the points of CAFs heterogeneity, spatial metabonomics and patient-derived tumor organoids (PDOs). These information may deepen the knowledge of tumor metabolism regulated by CAFs and provide novel insights into the development of metabolism-based anti-cancer strategies.
Collapse
Affiliation(s)
- Bing Xia
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jingxing Si
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, 310002, China.
| |
Collapse
|
2
|
Cheon I, Lee S, Oh S, Ahn YH. miR-200-mediated inactivation of cancer-associated fibroblasts via targeting of NRP2-VEGFR signaling attenuates lung cancer invasion and metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102194. [PMID: 38766528 PMCID: PMC11101731 DOI: 10.1016/j.omtn.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in promoting cancer cell motility, drug resistance, angiogenesis, and metastasis; therefore, extensive research has been conducted to determine their mode of activation. We aimed to identify whether miRNA-200 (miR-200), a widely recognized suppressor of epithelial-mesenchymal transition, prevents CAFs from promoting cancer progression. Overexpression of miR-200 prevented CAFs from promoting lung cancer cell migration, invasion, tumorigenicity, and metastasis. Additionally, miR-200 suppressed the ability of CAFs to recruit and polarize macrophages toward the M2 phenotype, as well as the migration and tube formation of vascular endothelial cells. NRP2, a co-receptor of vascular endothelial growth factor receptor (VEGFR), was confirmed to be a target of miR-200, which mediates the functional activity of miR-200 in CAFs. NRP2-VEGFR signaling facilitates the secretion of VEGF-D and pleiotrophin from CAFs, leading to the activation of cancer cell migration and invasion. These findings suggest that miR-200 remodels CAFs to impede cancer progression and metastasis and that miR-200 and NRP2 are potential therapeutic targets in the treatment of lung cancer.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Seonyeong Oh
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
3
|
Rajendran P, Sekar R, Abdallah BM, Fathima JH S, Ali EM, Jayaraman S, Abdelsalam SA, Veeraraghavan V. Epigenetic modulation of long noncoding RNA H19 in oral squamous cell carcinoma-A narrative review. Noncoding RNA Res 2024; 9:602-611. [PMID: 38532798 PMCID: PMC10963247 DOI: 10.1016/j.ncrna.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Oral Pathology & Microbiology, Meenakshi Ammal Dental College & Hospital, Alapakkam Main Road, Maduravoyal, Chennai, 95, TN, India
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Shazia Fathima JH
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Ragas Dental College and Hospitals, Chennai, 600119, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Selvaraj Jayaraman
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
4
|
Li PH, Zhang X, Yan H, Xia X, Deng Y, Miao Q, Luo Y, Liu G, Luo H, Zhang Y, Xu H, Jiang L, Li ZH, Shu Y. Contribution of crosstalk of mesothelial and tumoral epithelial cells in pleural metastasis of lung cancer. Transl Lung Cancer Res 2024; 13:965-985. [PMID: 38854934 PMCID: PMC11157377 DOI: 10.21037/tlcr-24-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Background Tumor metastasis commonly affects pleura in advanced lung cancer and results in malignant pleural effusion (MPE). MPE is related to poor prognosis, but without systematic investigation on different cell types and their crosstalk at single cell resolution. Methods We conducted single-cell RNA-sequencing (scRNA-seq) of lung cancer patients with pleural effusion. Next, our data were integrated with 5 datasets derived from individuals under normal, non-malignant disease and lung carcinomatous conditions. Mesothelial cells were re-clustered and their interactions with epithelial cells were comprehensively analyzed. Taking advantage of inferred ligand-receptor pairs, a prediction model of prognosis was constructed. The co-culture of mesothelial cells and malignant epithelial cells in vitro and RNA-seq was performed. Epidermal growth factor receptor (EGFR) antagonist cetuximab was utilized to prevent the lung cancer cells' invasiveness. Spatial distribution of cells in lung adenocarcinoma patients' samples were also analyzed to validate our findings. Results The most distinctive transcriptome profiles between tumor and control were revealed in mesothelial cells, which is the predominate cell type of pleura. Five subtypes were divided, including one predominately identified in MPE which was characterized by enriched cancer-related pathways (e.g., cell migration) along evolutionary trajectory from normal mesothelial cells. Cancer-associated mesothelial cells (CAMCs) exhibited varied interactions with different subtypes of malignant epithelial cells, and multiple ligands/receptors exhibited significant correlation with poor prognosis. Experimentally, mesothelial cells can increase the migration ability of lung cancer cells through co-culturing. EGFR was the only affected gene in cancer cells that exhibited interaction with mesothelial cells and was associated with poor prognosis. Using EGFR antagonist cetuximab prevented the lung cancer cells' increased invasiveness caused by mesothelial cells. Moreover, epithelial mitogen (EPGN)-EGFR interaction was supported through spatial distribution analysis, revealing the significant proximity between EPGN+ mesothelial cells and EGFR+ epithelial cells. Conclusions Our findings highlighted the important role of mesothelial cells and their interactions with cancer cells in pleural metastasis of lung cancer, providing potential targets for treatment.
Collapse
Affiliation(s)
- Pei-Heng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huayun Yan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Miao
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqiao Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guihong Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Han Luo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Lung Cancer Center, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Hui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Pashirzad M, Sahebkar A. The Prognostic Value and Clinical Significance of lncRNA SNHG5 Expression in Patients with Multiple Malignancies: A Bioinformatic and Meta-analysis. Curr Cancer Drug Targets 2024; 24:1286-1297. [PMID: 38409690 DOI: 10.2174/0115680096282865240111055640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Long non-coding RNA small nucleolar RNA host gene 5 (lncRNA SNHG5) has been identified as both a promising target for treatment and a predictor of prognosis in diverse types of cancer. The objective of this study was to assess whether lncRNA SNHG5 expression can be utilized as a prognostic biomarker for human cancer. METHODS To ensure a thorough search of the literature for relevant English studies published before July 2023, several databases were searched, including PubMed, Web of Science, ProQuest, Cochrane Library, and Google Scholar. The study evaluated the impact of lncRNA SNHG5 on the overall survival (OS) of cancer by calculating the pooled hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CIs). To further confirm the accuracy of the findings, the study investigated the expression profile and prognostic significance of lncRNA SNHG5 through the use of GenomicScape, OncoLnc, Kaplan-Meier plotter, and GEPIA databases. RESULTS In this study, 995 patients were examined across a total of fourteen original studies. The findings indicated that there was a significant relationship between heightened lncRNA SNHG5 expression and reduced OS, as evidenced by both univariate and multivariate analyses (HR = 1.89; 95% CI, 1.44-2.49; p < 0.001; HR = 3.97; 95% CI, 1.80-8.73; p < 0.001, respectively). Pooled OR analysis showed a significant association between over-expression of lncRNA SNHG5 with advanced histological grade (OR = 0.28; 95% CI, 0.11-0.71; p = 0.007), present lymph node metastasis (LNM; OR = 4.28; 95% CI, 2.47-7.43; p < 0.001), and smoking history (OR = 0.27; 95% CI, 0.15-0.49; p < 0.001). Bioinformatic databases confirmed that elevated SNHG5 expression was significantly linked to poor prognosis in cancer patients, including colorectal cancer (CRC), acute myeloid leukemia (AML), and esophageal adenocarcinoma (ESAD), and a longer OS in patients with uterine corpus endometrial carcinoma (UCEC). CONCLUSION These results suggest that lncRNA SNHG5 may serve as an adverse prognostic biomarker in several human cancers. Further investigations are needed to better understand the underlying mechanisms that link lncRNA SNHG5 to multiple malignancies.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Wang L, Wang H, Luo Y, Wu W, Gui Y, Zhao J, Xiong R, Li X, Yuan D, Yuan C. Role of LncRNA MIAT in Diabetic Complications. Curr Med Chem 2024; 31:1716-1725. [PMID: 37711129 DOI: 10.2174/0929867331666230914091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
Long non-coding RNA (LncRNA) refers to a large class of RNAs with over 200 nucleotides that do not have the function of encoding proteins. In recent years, more and more literature has revealed that lncRNA is involved in manipulating genes related to human health and disease, playing outstanding biological functions, which has attracted widespread attention from researchers. The newly discovered long-stranded non-coding RNA myocardial infarction-related transcript (LncRNA MIAT) is abnormally expressed in a variety of diseases, especially in diabetic complications, and has been proven to have a wide range of effects. This review article aimed to summarize the importance of LncRNA MIAT in diabetic complications, such as diabetic cardiomyopathy, diabetic nephropathy, and diabetic retinopathy, and highlight the latest findings on the pathway and mechanism of its participation in regulating diabetic complications, which may aid in finding new intervention targets for the treatment of diabetic complications. LncRNA MIAT competitively binds microRNAs to regulate gene expression as competitive endogenous RNAs. Thus, this review article has reviewed the biological function and pathogenesis of LncRNA MIAT in diabetic complications and described its role in diabetic complications. This paper will help in finding new therapeutic targets and intervention strategies for diabetes complications.
Collapse
Affiliation(s)
- Lijun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yibei Gui
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ruisi Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xueqin Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
7
|
Dong H, Yang C, Chen X, Sun H, He X, Wang W. Breast cancer-derived exosomal lncRNA SNHG14 induces normal fibroblast activation to cancer-associated fibroblasts via the EBF1/FAM171A1 axis. Breast Cancer 2023; 30:1028-1040. [PMID: 37653187 DOI: 10.1007/s12282-023-01496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Exosomes released from cancer cells can activate normal fibroblasts (NFs) into cancer-associated fibroblasts (CAFs), which promotes cancer development. Our study aims to explore the role and potential mechanisms of breast cancer exosomes-delivered long non-coding RNA (lncRNA) SNHG14 in regulating CAFs transformation. METHODS Adjacent normal tissues, cancerous and serum specimens were gathered in breast cancer patients. Exosomes and NFs were separated from breast cancer cells (SKBR-3) and normal tissues of patients, respectively. Cell viability and migration were measured with CCK-8 and Transwell assays. CAFs markers, fibroblast activation protein (FAP) and a-smooth muscle actin (α-SMA) were detected for assessing CAFs activation. The interactions between molecules were evaluated using dual luciferase reporter assay, RNA immunoprecipitation and chromatin immunoprecipitation. RESULTS SNHG14 and FAM171A1 were upregulated in breast cancer. Exosomes secreted by SKBR-3 cells induced NFs activation in CAFs, as indicated by upregulating CAFs marker levels and facilitated cell viability and migration. Exosomal SNHG14 silencing in SKBR-3 cells inhibited CAFs activation. SNHG14 positively regulated FAM171A1 expression through EBF1. FAM171A1 overexpression eliminated the inhibition effect of exosomal SNHG14 silencing in CAFs transformation. CONCLUSION Breast cancer-derived exosomal SNHG14 contributed to NFs transformation into CAFs by the EBF1/FAM171A1 axis.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Changcheng Yang
- Department of Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan Province, People's Republic of China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
8
|
Li W, Shi S. Prognostic value of cancer-associated fibroblasts-related genes in lung adenocarcinoma. Transl Cancer Res 2023; 12:1895-1911. [PMID: 37701101 PMCID: PMC10493796 DOI: 10.21037/tcr-23-199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023]
Abstract
Background The incidence of lung adenocarcinoma is in the forefront of malignant tumors in the world. The purpose of this study was to investigate the role of cancer-associated fibroblast-related genes (CAFRGs) in the occurrence, diagnosis and development of lung adenocarcinoma. Methods RNA data and corresponding clinical information of lung adenocarcinoma patients were acquired from The Cancer Genome Atlas (TCGA) database. Consensus clustering was performed to identify different molecular subgroups. The tumor immune states of different subgroups were determined by Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE; https://bioinformatics.mdanderson.org/estimate/index.html), microenvironment cell populations (MCP)-counter (which can reliably quantify the abundance of eight immune cell populations and two stromal cell populations), and single sample gene set enrichment analysis (ssGSEA) analyses. In order to elucidate the potential mechanism of CAFRGs, functional enrichment analysis including gene ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and GSEA analysis were performed on the differentially expressed genes (DEGs). Least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analysis were used to construct the prognostic risk model, which was verified by lung adenocarcinoma data from Gene Expression Omnibus (GEO) dataset GSE37745. Results This study identified two molecular subgroups with significant differences in survival. High immunoscore and immune cell infiltration were more common in the subgroup with better prognosis. GO and KEGG analysis showed that DEGs between the two different subgroups were mainly concentrated in the mitotic cell cycle, cell proliferation, vascular development, and humoral immune response, adaptive immune-related pathways. GSEA analysis indicated that RNA degradation and P53 signaling pathway might be related to the increased invasiveness of lung adenocarcinoma. Risk models based on CAFRGs have demonstrated potent potential for predicting lung adenocarcinoma survival and have been validated in validation cohorts. The nomogram combined with risk model and clinical characteristics can predict the prognosis of patients with lung adenocarcinoma. Conclusions The expression of CAFRGs is related to tumor immune microenvironment (TIME) of lung adenocarcinoma patients, and can predict the prognosis of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengnan Shi
- Department of Anesthesiology, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|
9
|
Lunina NA, Safina DR. Intercellular Interactions in the Tumor Stroma and Their Role in Oncogenesis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Kim D, Kim JS, Cheon I, Kim SR, Chun SH, Kim JJ, Lee S, Yoon JS, Hong SA, Won HS, Kang K, Ahn YH, Ko YH. Identification and Characterization of Cancer-Associated Fibroblast Subpopulations in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14143486. [PMID: 35884546 PMCID: PMC9324153 DOI: 10.3390/cancers14143486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) reside within the tumor microenvironment, facilitating cancer progression and metastasis via direct and indirect interactions with cancer cells and other stromal cell types. CAFs are composed of heterogeneous subpopulations of activated fibroblasts, including myofibroblastic, inflammatory, and immunosuppressive CAFs. In this study, we sought to identify subpopulations of CAFs isolated from human lung adenocarcinomas and describe their transcriptomic and functional characteristics through single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatics analyses. Cell trajectory analysis of combined total and THY1 + CAFs revealed two branching points with five distinct branches. Based on Gene Ontology analysis, we denoted Branch 1 as "immunosuppressive", Branch 2 as "neoantigen presenting", Branch 4 as "myofibroblastic", and Branch 5 as "proliferative" CAFs. We selected representative branch-specific markers and measured their expression levels in total and THY1 + CAFs. We also investigated the effects of these markers on CAF activity under coculture with lung cancer cells. This study describes novel subpopulations of CAFs in lung adenocarcinoma, highlighting their potential value as therapeutic targets.
Collapse
Affiliation(s)
| | - Jeong Seon Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.S.K.); (I.C.); (S.L.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Inyoung Cheon
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.S.K.); (I.C.); (S.L.)
| | - Seo Ree Kim
- Department of Internal Medicine, Division of Oncology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.R.K.); (S.H.C.); (H.S.W.)
| | - Sang Hoon Chun
- Department of Internal Medicine, Division of Oncology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.R.K.); (S.H.C.); (H.S.W.)
| | - Jae Jun Kim
- Department of Thoracic and Cardiovascular Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.S.K.); (I.C.); (S.L.)
| | - Jung Sook Yoon
- Uijeongbu St. Mary’s Hospital Clinical Research Laboratory, The Catholic University of Korea, Uijeongbu 11765, Korea;
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Hye Sung Won
- Department of Internal Medicine, Division of Oncology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.R.K.); (S.H.C.); (H.S.W.)
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea;
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.S.K.); (I.C.); (S.L.)
- Correspondence: (Y.-H.A.); (Y.H.K.); Tel.: +82-2-6986-6268 (Y.-H.A.); +82-2-2030-4360 (Y.H.K.)
| | - Yoon Ho Ko
- Department of Internal Medicine, Division of Oncology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.R.K.); (S.H.C.); (H.S.W.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (Y.-H.A.); (Y.H.K.); Tel.: +82-2-6986-6268 (Y.-H.A.); +82-2-2030-4360 (Y.H.K.)
| |
Collapse
|
11
|
The Prognostic Value of lncRNA MCM3AP-AS1 on Clinical Outcomes in Various Cancers: A Meta- and Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:4466776. [PMID: 35783010 PMCID: PMC9249515 DOI: 10.1155/2022/4466776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
Background. MCM3AP antisense RNA 1 (MCM3AP-AS1) is a newly identified potential tumor biomarker. Nevertheless, the prognostic value of MCM3AP-AS1 in cancer has been inconsistent in the available studies. We performed this meta-analysis to identify the prognostic role of MCM3AP-AS1 in various cancers. Methods. We searched PubMed, Web of Science, EMBASE, and the Cochrane Library databases to screen relevant studies. Hazard ratios (HR) or odds ratios (OR) and corresponding 95% confidence intervals (CI) were used to evaluate the relationship between aberrant MCM3AP-AS1 expression and survival and clinicopathological features (CFS) of cancer patients. A meta-analysis was performed using STATA 12.0 software. Additionally, results were validated by an online database based on The Cancer Genome Atlas (TCGA). Subsequently, we analyzed the MCM3AP-AS1-related genes and molecular mechanisms based on the MEM database. Results. Our results showed that overexpression of MCM3AP-AS1 was related to poor overall survival (OS) (
, 95% CI, 1.52–2.64,
) and relapse-free survival (RFS) (
, 95% CI 1.56–6.88,
). In addition, MCM3AP-AS1 overexpression was associated with TNM stage, differentiation grade, and lymph node metastasis, but not significantly with age, gender, and tumor size. In addition, MCM3AP-AS1 overexpression was verified by the GEPIA online database to be associated with poorer survival. The further functional investigation suggested that MCM3AP-AS1 may be involved in several cancer-related pathways. Conclusions. The overexpression of MCM3AP-AS1 was related to poor survival and CFS. MCM3AP-AS1 may be considered a novel prognostic marker and therapeutic target in various cancers.
Collapse
|
12
|
Bahramian S, Sahebi R, Roohinejad Z, Delshad E, Javid N, Amini A, Razavi AE, Shafiee M, Shamsabadi FT. Low expression of LncRNA-CAF attributed to the high expression of HIF1A in esophageal squamous cell carcinoma and gastric cancer patients. Mol Biol Rep 2022; 49:895-905. [PMID: 35040008 DOI: 10.1007/s11033-021-06882-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Cancer-associated fibroblasts (CAFs) are major components of tumor microenvironment that stimulate ESCC and GC progression. The LncRNA-CAF, FLJ22447, is located in the vicinity of HIF1A, while their association remains unclear. This study aims to assess the FLJ22447 expression in the ESCC and GC patients and evaluate its association with the HIF1A gene. METHODS Fresh ESCC and GC tumor samples and their adjacent non-tumor tissues were collected from patients who underwent surgery in Imam Khomeini Hospital, Tehran, Iran. The expression of FLJ22447, HIF1A, and VEGF was evaluated using qRT-PCR test. The association of their expression with tumor clinicopathological features in ESCC patients was assessed. System biology tools were then applied for the possible biological subsequences of the FLJ22447. RESULTS A significant reduction in FLJ22447 expression was observed in ESCC and GC tissues than adjacent non-tumor tissues, while, the expression of HIF1A and VEGF were increased. Low expression of FLJ22447 was significantly correlated with HIF1A (P = 2.4e-73, R = 0.63) and VEGF (P = 0.00019, R = 0.15) expression. A significant relationship was detected between the high expression of HIF1A and tumor stages (I-II) and it was related to the reduced survival of ESCC patients. Conversely, increased VEGF expression was linked to the advanced stages (III-IV) and metastasis in ESCC. The analysis of FLJ22447-interacted proteins showed that MYC, JUN, SMRCA4, PPARG, AR, FOS, and CEBPA are the hub genes. These proteins were implicated in the cancer related pathways. Among them, SPI1, E2F1, TCF7L2, and STAT1 were significantly expressed in esophageal and gastric cancers that were functionally involved in the proliferation, apoptosis, and angiogenesis pathways in cancer. CONCLUSION The results suggested that FLJ22447 may have a regulatory function on the HIF1A expression. We identified the FLJ22447-interacted proteins and their molecular function in cancer pathogenesis. Further research emphasis is to realize the association of FLJ22447 with its protein partners in progression of cancer. These may provide an insight into the FLJ22447 activity that could introduce it as a potential value in tumor gene therapy.
Collapse
Affiliation(s)
- Shabbou Bahramian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Roohinejad
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Encieh Delshad
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naeme Javid
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shafiee
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| | - Fatemeh T Shamsabadi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran. .,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
13
|
New Circulating Circular RNAs with Diagnostic and Prognostic Potential in Advanced Colorectal Cancer. Int J Mol Sci 2021; 22:ijms222413283. [PMID: 34948079 PMCID: PMC8706615 DOI: 10.3390/ijms222413283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of special endogenous long non-coding RNAs which are highly stable in the circulation, and, thus, more suitable as new biomarkers of colorectal cancer (CRC). The aim of our study was to explore the plasma expression levels of four circRNAs: has_circ_0001445, hsa_circ_0003028, hsa_circ_0007915 and hsa_circ_0008717 in patients with CRC and to evaluate their associations with clinicopathological characteristics and the clinical outcome of the patients. CircRNAs were extracted from patients’ plasma obtained prior to chemotherapy. Their expression levels were measured by qPCR and calculated applying the 2−ΔΔCt method. The levels of all four circRNAs were significantly increased in the plasma of CRC patients. At the optimal cut-off values hsa_circ_0001445 and hsa_circ_0007915 in plasma could significantly distinguish between patients with or without metastatic CRC with 92.56% sensitivity and 42.86% specificity, and with 86.07% sensitivity and 57.14% specificity, respectively. The mean overall survival (OS) of patients with high/intermediate expression of hsa_circ_0001445 was 30 months, significantly higher in comparison with the mean OS of the patients with low expression—20 months (log-rank test, p = 0.034). In multivariate Cox regression analysis, the low levels of hsa_circ_0001445 were also associated with shorter survival (HR = 1.59, 95% CI: 1.02–2.47, p = 0.040). A prognostic significance of hsa_circ_0001445 for patients with metastatic CRC was established.
Collapse
|
14
|
Tang J, Fang X, Chen J, Zhang H, Tang Z. Long Non-Coding RNA (lncRNA) in Oral Squamous Cell Carcinoma: Biological Function and Clinical Application. Cancers (Basel) 2021; 13:cancers13235944. [PMID: 34885054 PMCID: PMC8656574 DOI: 10.3390/cancers13235944] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Increasing evidence has revealed the regulatory roles of long non-coding RNAs (lncRNAs) in the initiation and progress of oral squamous cell carcinoma (OSCC). As some novel lncRNA-targeted techniques combined with immune checkpoint therapies have emerged, they provide a new strategy for OSCC treatment. This review summarizes current knowledge regarding the involvement of lncRNAs in OSCC along with their possible use as diagnostic and prognostic biomarker and therapeutic targets. Abstract Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.
Collapse
Affiliation(s)
- Jianfei Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Haixia Zhang
- The Oncology Department of Xiangya Second Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| |
Collapse
|
15
|
Li L, Khan S, Li S, Wang S, Wang F. Noncoding RNAs: emerging players in skin cancers pathogenesis. Am J Cancer Res 2021; 11:5591-5608. [PMID: 34873482 PMCID: PMC8640824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023] Open
Abstract
Skin malignancies form in tissues of the skin and are the most frequent cancers in the world, with an increasing incidence and a steady fatality rate. They are classified as melanoma or nonmelanoma cancers, which include basal cell carcinoma and squamous cell carcinoma. Noncoding RNA transcripts have received increased attention after the thorough analysis of the human genome revealed that most of the genomic components are not encoded to protein. MicroRNAs, long noncoding RNAs, and circular RNAs are some of the well-studied types of these noncoding regions. The alteration in any of these members' expression is associated intrinsically with human cancers, including skin malignancies, due to their critical functions in cell processes for normal development. As a result, investigating the noncoding component of the transcriptome opens up the possibility of discovering new therapeutic and diagnostic targets. This review discusses current studies on the involvement of microRNAs, long noncoding RNAs, and circular RNAs in the pathogenesis of human skin cancers.
Collapse
Affiliation(s)
- Lin Li
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, China
- Department of Medical Lab Technology, The University of HaripurPakistan
| | - Song Li
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| | - Shengchun Wang
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| | - Fang Wang
- Department of Dermatology, The Affiliated Children’s Hospital of Zhengzhou UniversityZhengzhou 450053, Henan, China
| |
Collapse
|
16
|
Wang Y, Fu L, Lu T, Zhang G, Zhang J, Zhao Y, Jin H, Yang K, Cai H. Clinicopathological and Prognostic Significance of Long Non-coding RNA MIAT in Human Cancers: A Review and Meta-Analysis. Front Genet 2021; 12:729768. [PMID: 34659354 PMCID: PMC8514773 DOI: 10.3389/fgene.2021.729768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Although the treatment of cancer has made evident progress, its morbidity and mortality are still high. A tumor marker is a critical indicator for early cancer diagnosis, and timely cancer detection can efficiently help improve the prognosis of patients. Therefore, it is necessary to identify novel markers associated with cancer. LncRNA myocardial infarction associated transcript (MIAT) is a newly identified tumor marker, and in this study, we aimed to explore the relationship between MIAT and clinicopathological features and patient prognosis. Methods: We searched PubMed, Embase, Web of Science, and The Cochrane Library from inception to September 2020 to identify correlational studies. Then, we extracted valid data and used Stata software to make forest plots. We used the hazard ratio (HR) or odds ratio (OR) with 95% CI to evaluate the relationship between aberrant expression of MIAT and patients' prognosis and clinicopathological features. Results: The study included 21 studies, containing 2,048 patients. Meta-analysis showed that overexpression of lncRNA MIAT was associated with poor overall survival (OS) (HR = 1.60, 95% CI, 1.31–1.96, p < 0.001). In addition, high expression of MIAT could forecast tumor size (OR = 2.26, 95% CI 1.34–3.81, p = 0.002), distant metastasis (OR = 2.54, 95% CI 1.84–3.50, p < 0.001), TNM stage (OR = 2.38, 95% CI 1.36–4.18, p = 0.002), lymph node metastasis (OR = 2.59, 95% CI 1.25–5.36, p = 0.011), and the degree of differentiation (OR = 2.65, 95% CI 1.54–4.58, p < 0.001). However, other clinicopathological features, including age (OR = 1.07, 95% CI 0.87–1.32, p = 0.516), gender (OR = 0.95, 95% CI 0.77–1.19, p = 0.668), and histology (OR = 0.72, 95% CI 0.48–1.10, p = 0.128) were not significantly different from high expression of MIAT. Conclusions: Our study showed that overexpression of MIAT is related to poor overall survival and clinicopathological features. MIAT can be considered a novel tumor marker to help diagnose tumors earlier and improve patient prognosis.
Collapse
Affiliation(s)
- Yongfeng Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
| | - Tingting Lu
- Institution of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
| | - Jiawei Zhang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuanbin Zhao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haojie Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institution of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
17
|
Malla RR, Padmaraju V, Marni R, Kamal MA. Natural products: Potential targets of TME related long non-coding RNAs in lung cancer. PHYTOMEDICINE 2021; 93:153782. [PMID: 34627097 DOI: 10.1016/j.phymed.2021.153782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions. PURPOSE OF STUDY To establish lncRNAs of TME as novel targets of natural compounds for lung cancer management. STUDY DESIGN Current study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME. RESULTS This review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer. CONCLUSION By critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India.
| | - Vasudevaraju Padmaraju
- Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rakshmitha Marni
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
18
|
Che H, Che Y, Zhang Z, Lu Q. Long Non-Coding RNA LINC01929 Accelerates Progression of Oral Squamous Cell Carcinoma by Targeting the miR-137-3p/FOXC1 Axis. Front Oncol 2021; 11:657876. [PMID: 33968763 PMCID: PMC8097103 DOI: 10.3389/fonc.2021.657876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Recently, additional long noncoding RNAs (lncRNAs) have been identified and their possible roles were investigated in a variety of human tumors. One of these lncRNAs, LINC01929, promoted the progression of some cancers, whereas its expression and biological function in human oral squamous cell carcinoma (OSCC) remains still mostly uncertain. The LINC01929 expression in OSCC tissues or cell lines was identified via quantitative real-time polymerase chain reaction. The cell counting kit-8, transwell migration, wound-healing, and flow cytometry assays were utilized to characterize the functions of LINC01929 in OSCC cells. The interactive relationships between LINC01929 and miR-137-3p, miR-137-3p and Forkhead box C1 (FOXC1) were investigated by the dual-luciferase activity assay. Our findings demonstrated that LINC01929 was highly expressed in OSCC tissue samples and cell lines, whereas miR-137-3p expression was downregulated. LINC01929 acted as a carcinogenic lncRNA with accelerated OSCC cell proliferation, migration and invasion, and suppression of apoptosis. We further indicated that LINC01929 facilitated tumor growth in xenograft mouse models. Mechanistically, LINC01929 acted as a sponge for miR-137-3p to elevate FOXC1 expression, which is the target of miR-137-3p. In addition, downregulated miR-137-3p expression rescued the suppressive behaviors of LINC01929 knockdown on the biological behaviors of OSCC cells. Taken together, LINC01929 functioned as a tumor-promoting lncRNA via the miR-137-3p/FOXC1 axis in OSCC, suggesting novel targets for OSCC therapy.
Collapse
Affiliation(s)
- Hongze Che
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanhai Che
- Department of Science and Education, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhimin Zhang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qing Lu
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
19
|
Hu W, Wang Y, Fang Z, He W, Li S. Integrated Characterization of lncRNA-Immune Interactions in Prostate Cancer. Front Cell Dev Biol 2021; 9:641891. [PMID: 33665192 PMCID: PMC7921328 DOI: 10.3389/fcell.2021.641891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is among the top mortality factors in male around the world. Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in tumor biology and immunology. However, lncRNA-immune interactions have not yet examined in prostate cancer. Here, we performed integrated analysis to characterize lncRNA-immune interactions in prostate cancer through multidimensional aspects, including immune-related hallmarks, tumor immunogenomic signatures, immune-related biological processes, immune cells, and immune checkpoints. We dissected the dysregulation of lncRNAs and their clinical relevance in prostate cancer, such as RP11-627G23.1 and RP11-465N4.5. Immune-related hallmarks took up the major parts among top significant lncRNA-hallmark interactions. Our analysis revealed that TGF-β signaling pathway was the most frequent to associate with lncRNAs, which is a signature of immune response in cancer. In addition, immune response and its regulation were the most closely connected immunological processes with lncRNA, implying the regulatory roles of lncRNAs on immune response in prostate cancer. We found that memory resting CD4+ T cells were the most lncRNA-correlated immune cell. LINC00861 was found to be potentially intervening targets of immunotherapy for prostate cancer patients, which was significantly associated with PD-1 and CTLA4. Collectively, we offered a handy resource to investigate regulatory roles of lncRNAs on tumor immunology and the development of clinical utility of lncRNAs in prostate cancer.
Collapse
Affiliation(s)
- Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanru Wang
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhixiao Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Nuclear Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E8782. [PMID: 33233641 PMCID: PMC7699705 DOI: 10.3390/ijms21228782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphatic Metastasis
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|