1
|
Wu J, Xie Y, Han L. miR-144-3p Derived from Bone Marrow Mesenchymal Stem Cells (BMSCs) Restrains the Drug Resistance of Acute Myeloid Leukemia (AML). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed whether miR-144-3p derived from BMSCs restrains the drug resistance of AML. Our study intends to assess miR-144-3p’s role in AML drug resistance. Drug resistance AML cells were transfected with miR-144-3p mimic or NC followed by measuring miR-144-3p level,
relation of miR-144-3p with Wnt, cell activity and apoptosis by flow cytometry and the expression of signal proteins by Western Blot. The action of miR-144-3p in inducting drug resistance of K562/AND was more effective. Cell apoptosis and proliferative index was increased by overexpression
of miR-144-3p along with significantly down regulated Wnt. In conclusion, the malignant invasion of AML with drug resistance is increased by miR-144-3p derived from BMSCs through regulating the Wnt/β-catenin signal, indicating that miT-144-3p might be a new target for the treatment
of AML.
Collapse
Affiliation(s)
- Jun Wu
- Department of Pediatrics, Wuhan Yaxin General Hospital, Wuhan City, Hubei Province, 430000, China
| | - Yingying Xie
- Department of Pediatrics, Wuhan Yaxin General Hospital, Wuhan City, Hubei Province, 430000, China
| | - Limei Han
- Department of Pediatrics, Wuhan Yaxin General Hospital, Wuhan City, Hubei Province, 430000, China
| |
Collapse
|
3
|
Nanjala C, Ren J, Mutie FM, Waswa EN, Mutinda ES, Odago WO, Mutungi MM, Hu GW. Ethnobotany, phytochemistry, pharmacology, and conservation of the genus Calanthe R. Br. (Orchidaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114822. [PMID: 34774685 DOI: 10.1016/j.jep.2021.114822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Genus Calanthe (family Orchidaceae) consists of more than 207 species distributed in both tropical and subtropical regions. In traditional medicine, Calanthe species provide remedies against various conditions such as arthritis, rheumatism, traumatic injuries, snake-bites, abdominal discomfort, nose bleeding, common colds, ulcers, chronic coughs, and others. Some species are also used as aphrodisiacs, tonics, and as pain relievers on joints and toothaches. AIM OF THE REVIEW This review provides comprehensive information on the herbal uses, chemical components, pharmacological activities, and conservation of Calanthe, which might be useful in the future development of potent herbal medicines and facilitate the enactment of better conservation strategies. MATERIALS AND METHODS Relevant information was obtained from online databases including SCI-Finder, Google Scholar, Web of Science, Science Direct, PubMed, Springer, IOP Science, and other web sources such as PubChem, The Plant List, and World Flora Online. Books, Ph.D. and MSc dissertations were used for unpublished literature. Information from Chinese literature was obtained from the CNKI database. RESULTS In total, 19 species of the genus Calanthe have been reported to be used in traditional medicine in different countries of Asia. A total of 265 chemical compounds from different chemical classes including, alkaloids, terpenoids, phenolic compounds and phenolic derivatives, phenanthrenes, and others, have been identified from Calanthe species. Calanquinone A isolated from C. arisanensis has been reported to exhibit antitumor activity against six malignant cell lines. Other bioactive compounds from Calanthe with pharmacological activity include phenanthrenes, phenanthrenequinones, 6'-O-β-D-apiofuranosylindican, 4H-Pyran-4one, 2, 3-dihydro-3,5 dihydroxy-6-methyl, and calanthoside. These compounds exhibit valuable biological properties such as hair restoration, anticancer activity, anti-inflammatory and antiarthritic activity, antidiabetic and hepatoprotective potency, antiplatelet aggregation action, and antibacterial and antifungal activities. Some Calanthe species, including C. ecallosa and C. yuana, are endangered in the IUCN red list. The high risk of extinction is attributed to illegal trade and unsustainable harvesting and utilization. CONCLUSIONS This review summarizes the herbal uses, chemical components, biological activity, and conservation of Calanthe. The pharmacological studies on this genus are limited; thus, extensive research on the toxicology, pharmaceutical standardization, and mechanism of action of the isolated bioactive compounds are needed. Since some species of Calanthe are listed as endangered, stringent guidelines on trade, collection, and sustainable utilization of medicinal orchids should be set up to facilitate the conservation of these species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Ren
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Fredrick Munyao Mutie
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moses Mutuse Mutungi
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|