He S, Hao X, He S, Hao X, Chen X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato.
BMC Genomics 2021;
22:748. [PMID:
34656106 PMCID:
PMC8520649 DOI:
10.1186/s12864-021-08043-w]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background
In recent years, much attention has been given to AP2/ERF transcription factors because they play indispensable roles in many biological processes, such as plant development and biotic and abiotic stress responses. Although AP2/ERFs have been thoroughly characterised in many plant species, the knowledge about this family in the sweet potato, which is a vital edible and medicinal crop, is still limited. In this study, a comprehensive genome-wide investigation was conducted to characterise the AP2/ERF gene family in the sweet potato.
Results
Here, 198 IbAP2/ERF transcription factors were obtained. Phylogenetic analysis classified the members of the IbAP2/ERF family into three groups, namely, ERF (172 members), AP2 (21 members) and RAV (5 members), which was consistent with the analysis of gene structure and conserved protein domains. The evolutionary characteristics of these IbAP2/ERF genes were systematically investigated by analysing chromosome location, conserved protein motifs and gene duplication events, indicating that the expansion of the IbAP2/ERF gene family may have been caused by tandem duplication. Furthermore, the analysis of cis-acting elements in IbAP2/ERF gene promoters implied that these genes may play crucial roles in plant growth, development and stress responses. Additionally, the available RNA-seq data and quantitative real-time PCR (qRT-PCR) were used to investigate the expression patterns of IbAP2/ERF genes during sweet potato root development as well as under multiple forms of abiotic stress, and we identified several developmental stage-specific and stress-responsive IbAP2/ERF genes. Furthermore, g59127 was differentially expressed under various stress conditions and was identified as a nuclear protein, which was in line with predicted subcellular localization results.
Conclusions
This study originally revealed the characteristics of the IbAP2/ERF superfamily and provides valuable resources for further evolutionary and functional investigations of IbAP2/ERF genes in the sweet potato.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12864-021-08043-w.
Collapse