1
|
Almansouri T, Waller R, Wharton SB, Heath PR, Matthews FE, Brayne C, van Eeden F, Simpson JE. The Microglial Transcriptome of Age-Associated Deep Subcortical White Matter Lesions Suggests a Neuroprotective Response to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:4445. [PMID: 38674030 PMCID: PMC11050386 DOI: 10.3390/ijms25084445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Age-associated deep-subcortical white matter lesions (DSCLs) are an independent risk factor for dementia, displaying high levels of CD68+ microglia. This study aimed to characterize the transcriptomic profile of microglia in DSCLs and surrounding radiologically normal-appearing white matter (NAWM) compared to non-lesional control white matter. CD68+ microglia were isolated from white matter groups (n = 4 cases per group) from the Cognitive Function and Ageing Study neuropathology cohort using immuno-laser capture microdissection. Microarray gene expression profiling, but not RNA-sequencing, was found to be compatible with immuno-LCM-ed post-mortem material in the CFAS cohort and identified significantly differentially expressed genes (DEGs). Functional grouping and pathway analysis were assessed using the Database for Annotation Visualization and Integrated Discovery (DAVID) software, and immunohistochemistry was performed to validate gene expression changes at the protein level. Transcriptomic profiling of microglia in DSCLs compared to non-lesional control white matter identified 181 significant DEGs (93 upregulated and 88 downregulated). Functional clustering analysis in DAVID revealed dysregulation of haptoglobin-haemoglobin binding (Enrichment score 2.5, p = 0.017), confirmed using CD163 immunostaining, suggesting a neuroprotective microglial response to blood-brain barrier dysfunction in DSCLs. In NAWM versus control white matter, microglia exhibited 347 DEGs (209 upregulated, 138 downregulated), with significant dysregulation of protein de-ubiquitination (Enrichment score 5.14, p < 0.001), implying an inability to maintain protein homeostasis in NAWM that may contribute to lesion spread. These findings enhance understanding of microglial transcriptomic changes in ageing white matter pathology, highlighting a neuroprotective adaptation in DSCLs microglia and a potentially lesion-promoting phenotype in NAWM microglia.
Collapse
Affiliation(s)
- Taghreed Almansouri
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; (T.A.); (R.W.); (S.B.W.); (P.R.H.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; (T.A.); (R.W.); (S.B.W.); (P.R.H.)
| | - Stephen B. Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; (T.A.); (R.W.); (S.B.W.); (P.R.H.)
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; (T.A.); (R.W.); (S.B.W.); (P.R.H.)
| | - Fiona E. Matthews
- Institute for Clinical and Applied Health Research, University of Hull, Hull HU6 7RX, UK;
| | - Carol Brayne
- Department of Psychiatry, University of Cambridge, Cambridge CB2 3EG, UK;
| | | | - Julie E. Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; (T.A.); (R.W.); (S.B.W.); (P.R.H.)
| |
Collapse
|
2
|
Qiu X, Wang B, Gong H, Bu S, Li P, Zhao R, Li M, Zhu L, Huo X. Integrative analysis of transcriptome and proteome in primary Sjögren syndrome. Genomics 2024; 116:110767. [PMID: 38128705 DOI: 10.1016/j.ygeno.2023.110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Primary Sjögren's syndrome (pSS) is a intricate autoimmune disease mainly characterized of immune-mediated destruction of exocrine tissues, such as salivary and lacrimal glands, occurring dry mouth and eyes. Although some breakthroughs in understanding pSS have been uncovered, many questions remain about its pathogenesis, especially the internal relations between exocrine glands and secretions. METHOD Transcriptomic and proteomic analyses were conducted on salivary tissues and saliva in experimental Sjögren syndrome (ESS). The ESS model was established by immunization with salivary gland protein. The expression of mRNAs and proteins in salivary tissues and saliva were determined by high-throughput sequencing transcriptomic analysis and LC-MS/MS-based proteome, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to recognize dysregulated genes and proteins. The association between RNA and protein abundance was investigated to provides a comprehensive understanding of RNA-protein correlations in the pathogenesis of pSS. RESULTS As a result, we successfully established the ESS model. We recognized 3221 differentially expressed genes (DEGs) and 253 differentially expressed proteins (DEPs). The sample analysis showed that 61 proteins overlapped through the integrative analysis of transcriptomics and proteomics data. The enrichment pathway analysis of DEGs and DEPs in samples showed alterations in renin-angiotensin-system (RAS), lysosome, and apoptosis. Notably, we found that some genes, such as AGT, FN1, Klk1b26, Klk1, Klk1b5, Klk1b3 had a consistent trend in the regulation at the RNA and protein levels and might be potential diagnostic biomarkers of pSS. CONCLUSION Herein, we found critical processes and potential biomakers that may contribute to pSS pathogenesis by analyzing dysregulated genes and pathways. Additionally, the integrative multi-omics datasets provided additional insight into understanding complicated disease mechanisms.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beijia Wang
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongxiao Gong
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Su Bu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Pingping Li
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Runzhi Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Mingde Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ling Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
3
|
Yang H, Meng R, Jiang J, Luo Y, Deng X, Yang S, Chen S, Wu J, Wan Y, Li Y, Jin H, He Q, Wang D, Chang J, Yang K, Zhou Y, Hu B. Association of white matter hyperintensities with long-term EGFR-TKI treatment and prediction of progression risk. Brain Behav 2023; 13:e3326. [PMID: 38054663 PMCID: PMC10726800 DOI: 10.1002/brb3.3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE The purpose of this study was to test the hypothesis that brain white matter hyperintensities (WMH) are more common in patients receiving epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) and identify clinical risk factors associated with WMH. EXPERIMENTAL DESIGN This multiple-center, prospective cohort study was conducted from March 2017 to July 2020. Two groups of patients with non-small cell lung cancer (NSCLC) who received or did not receive EGFR-TKI were included and followed up for more than 24 months. The progression of WMH was defined as an increase of ≥1 point on the Fazekas visual rating scale between the baseline and at the 2-year follow-up. A modified Poisson regression model was performed to evaluate risk factors on increased WMH load. RESULTS Among 286 patients with NSCLC, 194 (68%) patients with NSCLC who received EGFR-TKI and 92 (32%) patients with NSCLC without EGFR-TKI treatment were analyzed. Modified Poisson regression analysis showed that EGFR-TKI treatment was independently associated with the WMH progression (EGFR-TKI: aRR 2.72, 95% confidence interval [CI] 1.46-5.06, p = .002). Interleukin (IL)-2, IL-4, and IL-10 were associated with increased WMH in the adjusted model (IL-2: aRR 1.55 [95% CI 1.06-2.25], p = .023; IL-4: aRR 1.66 [95% CI 1.13-2.43], p = .010; IL-10: aRR 1.48 [95% CI 1.06-2.06], p = .020). CONCLUSION Patients with NSCLC who received EGFR-TKI may be at higher risk of developing WMH or worsening of WMH burden. The impact of increased WMH lesions in these patients is to be further assessed. IL-2, IL-4, and IL-10 may be used as potential biomarkers to monitor the risk of increased WMH burden.
Collapse
Affiliation(s)
- Hang Yang
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junjie Jiang
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Luo
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaolin Deng
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sibo Yang
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengcai Chen
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiehong Wu
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Wan
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanan Li
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huijuan Jin
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Quanwei He
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - David Wang
- Neurovascular DivisionDepartment of NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kunyu Yang
- Cancer Center, Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yifan Zhou
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bo Hu
- Department of NeurologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Shi G, Ke D, Gong P, Yu P, Zhou J, Wang M, Zhang X, Wang X, Guo M, Xu M, Zhou R. Serum YKL-40 Levels and White Matter Hyperintensities in Patients with Acute Ischemic Stroke. J Inflamm Res 2023; 16:311-319. [PMID: 36721527 PMCID: PMC9884433 DOI: 10.2147/jir.s398701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Background White matter hyperintensity (WMH) is associated with risk of acute ischemic stroke (AIS) and poor outcomes after AIS. The purpose of this prospective study was to evaluate the association between serum YKL-40 levels and WMH burden in patients with AIS. Methods From February 2020 to March 2021, a total of 672 consecutive AIS patients with magnetic resonance imaging data were prospectively recruited form two centers. Serum YKL-40 levels were quantified using enzyme-linked immunosorbent assay. The burden of WMH was semiquantitatively measured by the Fazekas visual grading scale. According to severity of overall WMH, patients were dichotomized into none-mild WMH group (Fazekas score 0-2) or moderate-severe WMH group (Fazekas score 3-6). Besides, based on severity of periventricular WMH (PV-WMH) and deep WMH (D-WMH), patients were categorized as none-mild (Fazekas score 0-1) or moderate-severe (Fazekas score 2-3). Results Among the 672 patients, 335 (49.9%) participants were identified with moderate-severe overall WMH, 326 (48.5%) with moderate-severe PV-WMH and 262 (39.0%) with moderate-severe D-WMH. Compared with the first quartile of serum YKL-40, the adjusted odds ratio (OR) of the fourth quartile for moderate-severe PV-WMH was 2.473 (95% confidence interval [CI] 1.316-4.646; P=0.005). No significant association was observed between YKL-40 and overall WMH (OR 0.762; 95% CI 0.434-1.336; P=0.343) or D-WMH (OR 0.695; 95% CI 0.413-1.171; P=0.172). Conclusion Our results suggested that higher YKL-40 levels appeared to be associated with PV-WMH, but not with overall WMH or D-WMH in patients with AIS.
Collapse
Affiliation(s)
- Guomei Shi
- Department of Neurology, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Dongdong Ke
- Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Department of Rehabilitation, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Pengyu Gong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China,Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Yu
- Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Department of Radiology, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Meng Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaorong Wang
- Department of Neurology, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Minwang Guo
- Department of Neurology, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Mingyang Xu
- Department of Neurology, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China
| | - Rujuan Zhou
- Department of Neurology, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Stroke Center, the Taixing People’s Hospital, Taixing, Jiangsu, People’s Republic of China,Correspondence: Rujuan Zhou, Tel +86-13951158499, Email
| |
Collapse
|
5
|
Vazquez-Villasenor I, Garwood CJ, Simpson JE, Heath PR, Mortiboys H, Wharton SB. Persistent DNA damage alters the neuronal transcriptome suggesting cell cycle dysregulation and altered mitochondrial function. Eur J Neurosci 2021; 54:6987-7005. [PMID: 34536321 DOI: 10.1111/ejn.15466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
Oxidative DNA damage induces changes in the neuronal cell cycle and activates a DNA damage response (DDR) to promote repair, but these processes may be altered under a chronic oxidative environment, leading to the accumulation of unrepaired DNA damage and continued activation of a DDR. Failure to repair DNA damage can lead to apoptosis or senescence, which is characterized by a permanent cell cycle arrest. Increased oxidative stress and accumulation of oxidative DNA damage are features of brain ageing and neurodegeneration, but the effects of persistent DNA damage in neurons are not well characterized. We developed a model of persistent oxidative DNA damage in immortalized post-mitotic neurons in vitro by exposing them to a sublethal concentration of hydrogen peroxide following a 'double stress' protocol and performed a detailed characterization of the neuronal transcriptome using microarray analysis. Persistent DNA damage significantly altered the expression of genes involved in cell cycle regulation, DDR and repair mechanisms, and mitochondrial function, suggesting an active DDR response to replication stress and alterations in mitochondrial electron transport chain. Quantitative polymerase chain reaction (qPCR) and functional validation experiments confirmed hyperactivation of mitochondrial Complex I in response to persistent DNA damage. These changes in response to persistent oxidative DNA damage may lead to further oxidative stress, contributing to neuronal dysfunction and ultimately neurodegeneration.
Collapse
Affiliation(s)
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Fan R, Cui Q. Toward comprehensive functional analysis of gene lists weighted by gene essentiality scores. Bioinformatics 2021; 37:4399-4404. [PMID: 34170294 DOI: 10.1093/bioinformatics/btab475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Gene functional enrichment analysis represents one of the most popular bioinformatics methods for annotating the pathways and function categories of a given gene list. Current algorithms for enrichment computation such as Fisher's exact test and hypergeometric test totally depend on the category count numbers of the gene list and one gene set. In this case, whatever the genes are, they were treated equally. However, actually genes show different scores in their essentiality in a gene list and in a gene set. It is thus hypothesized that the essentiality scores could be important and should be considered in gene functional analysis. RESULTS For this purpose, here we proposed WEAT (https://www.cuilab.cn/weat/), a weighted gene set enrichment algorithm and online tool by weighting genes using essentiality scores. We confirmed the usefulness of WEAT using three case studies, the functional analysis of one aging-related gene list, one gene list involved in Lung Squamous Cell Carcinoma (LUSC), and one cardiomyopathy gene list from Drosophila model. Finally, we believe that the WEAT method and tool could provide more possibilities for further exploring the functions of given gene lists. AVAILABILITY The datasets generated and analyzed during the current study are available on our website at https://www.cuilab.cn/weat/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Fan
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|