1
|
Belykh A, Hawro I, Kolczyńska-Matysiak K, Loza-Valdes A, Mieczkowski A, Sumara G. Triazolo[4,5-d]pyrimidin-5-amines based ERK3 inhibitors fail to demonstrate selective effects on adipocyte function. Arch Biochem Biophys 2024; 751:109825. [PMID: 37992885 DOI: 10.1016/j.abb.2023.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Extracellular signal-regulated kinase 3 (ERK3 also designated MAPK6 - mitogen-activated protein kinase 6) is a ubiquitously expressed kinase participating in the regulation of a broad spectrum of physiological and pathological processes. Targeted inhibition of the kinase may allow the development of novel treatment strategies for a variety of types of cancer and somatic pathologies, as well as preserving metabolic health, combat obesity and diabetes. We chose and synthesized three triazolo [4,5-d]pyrimidin-5-amines proposed previously as putative ERK3 inhibitors to assess their selectivity and biological effects in terms of metabolic state impact in living cells. As it was previously shown that ERK3 is a major regulator of lipolysis in adipocytes, we focused on this process. Our new results indicate that in addition to the previously identified lipolytic enzyme ATGL, ERK3 also regulates hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). Moreover, this kinase also promotes the abundance of fatty acid synthase (FASN) as well as protein kinase cAMP-activated catalytic subunit alpha (PKACα). To investigate various effects of putative ERK3 inhibitors on lipolysis, we utilized different adipocyte models. We demonstrated that molecules exhibit lipolysis-modulating effects; however, the effects of triazolo [4,5-d]pyrimidin-5-amines based inhibitors on lipolysis are not dependent on ERK3. Subsequently, we revealed a wide range of the compounds' possible targets using a machine learning-based prediction. Therefore, the tested compounds inhibit ERK3 in vitro, but the biological effect of this inhibition is significantly overlapped and modified by some other molecular events related to the non-selective binding to other targets.
Collapse
Affiliation(s)
- Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego, 02-106 Warsaw, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Tiek D, Wells CI, Schröder M, Song X, Alamillo-Ferrer C, Goenka A, Iglesia R, Lu M, Hu B, Kwarcinski F, Sintha P, de Silva C, Hossain MA, Picado A, Zuercher W, Zutshi R, Knapp S, Riggins RB, Cheng SY, Drewry DH. SGC-CLK-1: A chemical probe for the Cdc2-like kinases CLK1, CLK2, and CLK4. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2023; 3:100045. [PMID: 38009092 PMCID: PMC10673624 DOI: 10.1016/j.crchbi.2023.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.
Collapse
Affiliation(s)
- Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Martin Schröder
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alfredo Picado
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Reena Zutshi
- Luceome Biotechnologies LLC, Tucson, AZ, 85719, USA
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Wells CI, Drewry DH. Developing a Kinase Chemogenomic Set: Facilitating Investigation into Kinase Biology by Linking Phenotypes to Targets. Methods Mol Biol 2023; 2706:11-24. [PMID: 37558938 DOI: 10.1007/978-1-0716-3397-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Advances in increasingly complex phenotypic screening with lower throughput have necessitated the screening of smaller more highly annotated sets. One such collection of compounds which has been recently assembled is the kinase chemogenomic set. This is a set of curated kinase inhibitors built upon previous iterations, PKIS and PKIS2, and donations from our partners. Each compound in the set has been carefully selected based on selectivity, potency, and kinome coverage. These compounds as a set have been made available to the scientific community, enabling phenotypic screens to identify kinases that drive novel biology. Additionally, the associated data deposited in the public domain have also been used to inform new inhibitor design. Further expansion of this set to complete kinome coverage will allow for a greater understanding of kinase biology and its role in disease.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC, USA.
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|