1
|
Zuo J, Wu D, Zhang Y, Luo H, Jing G, Yuan M, Fang Q, Yang C, Wang X, Wu X, Song X. VCPIP1 negatively regulates NF-κB signaling pathways by deubiquitinating and stabilizing Erbin in MDP-stimulated macrophages. Int Immunopharmacol 2024; 143:113622. [PMID: 39550842 DOI: 10.1016/j.intimp.2024.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Macrophages are present in all tissues and body compartments under homeostatic physiological conditions. Importantly, they play a key role in pathological inflammatory processes when disturbed. They can quickly produce large amounts of inflammatory cytokines in response to danger signals. Macrophages can recognize muramyl dipeptide (MDP) through nucleotide-binding oligomerization domain (NOD)-like receptors, subsequently activating the NF-κB signaling pathway and producing proinflammatory cytokines. Erbin can bind to NOD2 and inhibit MDP-induced NF-κB activation, thus participating in the regulation of inflammatory response. Stabilizing or enhancing Erbin expression is essential for suppressing inflammatory responses. In this study, we used a deubiquitination enzyme plasmid library to screen for a key deubiquitinase, VCPIP1, which interacts with Erbin and influences its stability through deubiquitination modification. We investigated whether VCPIP1 affects inflammation using MDP-stimulated RAW 264.7 and BMDMs cells. The results showed that VCPIP1 deficiency reduced Erbin expression and increased NF-κB phosphorylation. Additionally, VCPIP1 deficiency promoted the release of inflammatory factors (IL-1β, IL-6, and TNF-α) in RAW 264.7 cells and BMDMs. This study further expands the role of deubiquitinases (DUBs) in inflammation, providing new insights for the prevention and treatment of sepsis, tumors, immune diseases, and other inflammatory reactions.
Collapse
Affiliation(s)
- Jing Zuo
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Die Wu
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Ying Zhang
- Department of Anesthesiology, Dong Feng Hospital of Hubei Medical University, Shiyan 442000, Zhangwan, 16 Daling Road, Hubei Province, China
| | - Huan Luo
- Department of Anesthesiology, Cancer Hospital of Chongqing University, Chongqing 400030, Shapingba, 181 Hanyu Road, Chongqing Municipality, China
| | - Guoqing Jing
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China
| | - Qing Fang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Cheng Yang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xing Wang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China.
| | - Xuemin Song
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China.
| |
Collapse
|
2
|
Wu D, Zhang H, Li F, Liu S, Wang Y, Zhang Z, Wang J, Wu Q. Sec13 promotes glycolysis by inhibiting Ubqln1 mediated Pgm1 ubiquitination in ALI. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167475. [PMID: 39159700 DOI: 10.1016/j.bbadis.2024.167475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Acute lung injury (ALI) is a severe lung damage characterized by acute hypoxemia, increased pulmonary vascular permeability, and inflammatory reactions. Despite current treatments, mortality from ALI remains high. This study found that Sec13 is highly expressed in ALI and regulates it by glycolysis and epithelial-mesenchymal transition (EMT). In an ALI mouse model and cell model, Sec13 expression increased, accompanied by enhanced glycolysis, EMT, and inflammation. Sec13 knockdown suppressed these effects, alleviating ALI. Sec13 forms a protein complex with Pgm1, an enzyme regulating glucose-6-phosphate (G6P) production, and Ubqln1, an ubiquitin ligase. Sec13 inhibits Ubqln1-mediated Pgm1 ubiquitination, thereby stabilizing Pgm1. In ALI, Pgm1 binding to Sec13 increased but binding to Ubqln1 decreased. Sec13 knockdown decreased lactate, G6P, EMT markers, and inflammatory cytokines. Pgm1 knockdown produced similar effects. Ubqln1 overexpression suppressed inflammation but decreased Pgm1 expression. In conclusion, Sec13 plays a key role in ALI by inhibiting Ubqln1-mediated Pgm1 ubiquitination, affecting glycolysis and EMT. Sec13 and Pgm1 may be new targets for treating ALI.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiannan Wang
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuge Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Brumbaugh BJ, Laga AC, Pouli D, Fernandez-Figueras MT, Hoang MP. The Histopathology of Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic Syndrome: Report of 12 Skin Biopsies From 6 Patients. Am J Dermatopathol 2024; 46:637-647. [PMID: 39293663 DOI: 10.1097/dad.0000000000002716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
ABSTRACT We present the histopathology of 12 skin biopsies from 6 patients with vacuoles, enzyme E1, X-linked, autoinflammatory, somatic syndrome and review the literature. The age of these 6 men ranges from 62 to 83 years (median of 70 years). UBA1 mutation was documented in all 6 patients. Multiple organ systems were involved with constitutional symptoms noted in 4 of 6 patients (67%), cutaneous involvement in 6 of 6 patients (100%), hematologic abnormalities in 6 of 6 patients (100%), pulmonary involvement in 4 of 6 patients (67%), musculoskeletal abnormalities in 3 of 6 patients (50%), vascular thrombosis in 2 of 6 patients (33%), ocular involvement in 2 of 6 patients (33%), and gastrointestinal involvement in 5 of 6 patients (83%). Of the 6 presented patients, neutrophilic dermatosis was seen in 3 biopsies, histiocytoid neutrophilic dermatosis in 1 biopsy, neutrophilic dermatosis with vasculitis in 1 biopsy, neutrophilic and granulomatous dermatitis in 2 biopsies, septal panniculitis consistent with erythema nodosum in 2 biopsies, and nonspecific patterns in 3 biopsies. In summary, neutrophilic dermatosis, small-vessel vasculitis, and panniculitis are frequent histopathologic patterns noted in decreasing frequency in skin biopsies of the patients with vacuoles, enzyme E1, X-linked, autoinflammatory, somatic syndrome. However, the histopathologic findings can be diverse, nonspecific in some instances, and varied among different biopsies obtained from the same patient.
Collapse
Affiliation(s)
| | - Alvaro C Laga
- Associate Professor of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Dimitra Pouli
- Clinical Fellow of Pathology, Massachusetts General Hospital, Boston, MA
| | | | - Mai P Hoang
- Professor of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
4
|
Delyea CJ, Forster MD, Luo S, Dubrule BE, Julien O, Bhavsar AP. The Salmonella Effector SspH2 Facilitates Spatially Selective Ubiquitination of NOD1 to Enhance Inflammatory Signaling. Biochemistry 2024; 63:2266-2279. [PMID: 39189508 PMCID: PMC11412229 DOI: 10.1021/acs.biochem.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
As part of its pathogenesis, Salmonella enterica serovar Typhimurium delivers effector proteins into host cells. One effector is SspH2, a member of the so-called novel E3 ubiquitin ligase family, that interacts with and enhances, NOD1 pro-inflammatory signaling, though the underlying mechanisms are unclear. Here, we report that SspH2 interacts with multiple members of the NLRC family to enhance pro-inflammatory signaling by targeted ubiquitination. We show that SspH2 modulates host innate immunity by interacting with both NOD1 and NOD2 in mammalian epithelial cell culture via the NF-κB pathway. Moreover, purified SspH2 and NOD1 directly interact, where NOD1 potentiates SspH2 E3 ubiquitin ligase activity. Mass spectrometry and mutational analyses identified four key lysine residues in NOD1 that are required for its enhanced activation by SspH2, but not its basal activity. These critical lysine residues are positioned in the same region of NOD1 and define a surface on the receptor that appears to be targeted by SspH2. Overall, this work provides evidence for post-translational modification of NOD1 by ubiquitin and uncovers a unique mechanism of spatially selective ubiquitination to enhance the activation of an archetypal NLR.
Collapse
Affiliation(s)
- Cole J. Delyea
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Malcolm D. Forster
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Shu Luo
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Bradley E. Dubrule
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Amit P. Bhavsar
- Department
of Medical Microbiology and Immunology, Faculty of Medicine &
Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
5
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
6
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Li J, Zhang B, Feng Z, An D, Zhou Z, Wan C, Hu Y, Sun Y, Wang Y, Liu X, Wei W, Yang X, Meng J, Che M, Sheng Y, Wu B, Wen L, Huang F, Li Y, Yang K. Stabilization of KPNB1 by deubiquitinase USP7 promotes glioblastoma progression through the YBX1-NLGN3 axis. J Exp Clin Cancer Res 2024; 43:28. [PMID: 38254206 DOI: 10.1186/s13046-024-02954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Zhang S, Guo Y, Zhang S, Wang Z, Zhang Y, Zuo S. Targeting the deubiquitinase USP2 for malignant tumor therapy (Review). Oncol Rep 2023; 50:176. [PMID: 37594087 PMCID: PMC10463009 DOI: 10.3892/or.2023.8613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The ubiquitin‑proteasome system is a major degradation pathway for >80% of proteins in vivo. Deubiquitylases, which remove ubiquitinated tags to stabilize substrate proteins, are important components involved in regulating the degradation of ubiquitinated proteins. In addition, they serve multiple roles in tumor development by participating in physiological processes such as protein metabolism, cell cycle regulation, DNA damage repair and gene transcription. The present review systematically summarized the role of ubiquitin‑specific protease 2 (USP2) in malignant tumors and the specific molecular mechanisms underlying the involvement of USP2 in tumor‑associated pathways. USP2 reverses ubiquitin‑mediated degradation of proteins and is involved in aberrant proliferation, migration, invasion, apoptosis and drug resistance of tumors. Additionally, the present review summarized studies reporting on the use of USP2 as a therapeutic target for malignancies such as breast, liver, ovarian, colorectal, bladder and prostate cancers and glioblastoma and highlights the current status of pharmacological research on USP2. The clinical significance of USP2 as a therapeutic target for malignant tumors warrants further investigation.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yi Guo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yewei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Wang T, Tong J, Zhang X, Luo H, Xu L, Wang Z. In silico screening and computational evaluation of novel promising USP14 inhibitors targeting the palm-thumb pocket. Phys Chem Chem Phys 2023; 25:20903-20916. [PMID: 37527190 DOI: 10.1039/d3cp02537c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Protein degradation and synthesis are essential for regulating various biological activities within the body. As a member of deubiquitinating enzymes (DUBs), ubiquitin-specific protease 14 (USP14) plays a critical role in regulating protein degradation and maintaining cellular protein homeostasis. However, abnormal expression of USP14 has been associated with a variety of malignant tumors and other diseases. In this study, we conducted hierarchical virtual screening against the palm-thumb pocket of USP14, which resulted in the identification of two promising hits with novel scaffolds. We systematically evaluated the potential of these two hits in terms of their binding affinity and selectivity at the computational level. The results indicated that they had stronger binding affinities than previously reported molecules, as evidenced by lower docking scores and binding free energies. The binding stability analysis and hotspot residue prediction based on the MD simulations further revealed that they were capable of stably binding to the palm-thumb pocket of USP14 via crucial interactions with the residues GLN197, TYR476, ASP199, PHE331, TYR436 and HIS426. More importantly, both candidates exhibit higher selectivity for USP14 over several other USP family members (USP5, USP7 and USP15). Our findings are hoped to be a good starting point for the development of selective USP14 inhibitors.
Collapse
Affiliation(s)
- Tianhao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Jianbo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xing Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Hao Luo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
| |
Collapse
|
10
|
Hu J, Zhou S, Guo W. Construction of the coexpression network involved in the pathogenesis of thyroid eye disease via bioinformatics analysis. Hum Genomics 2022; 16:38. [PMID: 36076300 PMCID: PMC9461120 DOI: 10.1186/s40246-022-00412-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background Thyroid eye disease (TED) is the most common orbital pathology that occurs in up to 50% of patients with Graves’ disease. Herein, we aimed at discovering the possible hub genes and pathways involved in TED based on bioinformatical approaches. Results The GSE105149 and GSE58331 datasets were downloaded from the Gene Expression Omnibus (GEO) database and merged for identifying TED-associated modules by weighted gene coexpression network analysis (WGCNA) and local maximal quasi-clique merger (lmQCM) analysis. EdgeR was run to screen differentially expressed genes (DEGs). Transcription factor (TF), microRNA (miR) and drug prediction analyses were performed using ToppGene suite. Function enrichment analysis was used to investigate the biological function of genes. Protein–protein interaction (PPI) analysis was performed based on the intersection between the list of genes obtained by WGCNA, lmQCM and DEGs, and hub genes were identified using the MCODE plugin. Based on the overlap of 497 genes retrieved from the different approaches, a robust TED coexpression network was constructed and 11 genes (ATP6V1A, PTGES3, PSMD12, PSMA4, METAP2, DNAJA1, PSMA1, UBQLN1, CCT2, VBP1 and NAA50) were identified as hub genes. Key TFs regulating genes in the TED-associated coexpression network, including NFRKB, ZNF711, ZNF407 and MORC2, and miRs including hsa-miR-144, hsa-miR-3662, hsa-miR-12136 and hsa-miR-3646, were identified. Genes in the coexpression network were enriched in the biological processes including proteasomal protein catabolic process and proteasome-mediated ubiquitin-dependent protein catabolic process and the pathways of endocytosis and ubiquitin-mediated proteolysis. Drugs perturbing genes in the coexpression network were also predicted and included enzyme inhibitors, chlorodiphenyl and finasteride. Conclusions For the first time, TED-associated coexpression network was constructed and key genes and their functions, as well as TFs, miRs and drugs, were predicted. The results of the present work may be relevant in the treatment and diagnosis of TED and may boost molecular studies regarding TED. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00412-0.
Collapse
Affiliation(s)
- Jinxing Hu
- Department of Endocrinology, HwaMei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street Zhejiang Province, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Shan Zhou
- Department of Endocrinology, HwaMei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street Zhejiang Province, Ningbo, 315010, China. .,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | - Weiying Guo
- Department of Endocrinology, HwaMei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street Zhejiang Province, Ningbo, 315010, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| |
Collapse
|
11
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
12
|
Chen H, Liu N, Zhuang S. Macrophages in Renal Injury, Repair, Fibrosis Following Acute Kidney Injury and Targeted Therapy. Front Immunol 2022; 13:934299. [PMID: 35911736 PMCID: PMC9326079 DOI: 10.3389/fimmu.2022.934299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a renal disease with a high incidence and mortality. Currently, there are no targeted therapeutics for preventing and treating AKI. Macrophages, important players in mammalian immune response, are involved in the multiple pathological processes of AKI. They are dynamically activated and exhibit a diverse spectrum of functional phenotypes in the kidney after AKI. Targeting the mechanisms of macrophage activation significantly improves the outcomes of AKI in preclinical studies. In this review, we summarize the role of macrophages and the underlying mechanisms of macrophage activation during kidney injury, repair, regeneration, and fibrosis and provide strategies for macrophage-targeted therapies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|