1
|
Lamontagne F, Paz-Trejo C, Zamorano Cuervo N, Grandvaux N. Redox signaling in cell fate: Beyond damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119722. [PMID: 38615720 DOI: 10.1016/j.bbamcr.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This review explores the nuanced role of reactive oxygen species (ROS) in cell fate, challenging the traditional view that equates ROS with cellular damage. Through significant technological advancements in detecting localized redox states and identifying oxidized cysteines, a paradigm shift has emerged: from ROS as merely damaging agents to crucial players in redox signaling. We delve into the intricacies of redox mechanisms, which, although confined, exert profound influences on cellular physiological responses. Our analysis extends to both the positive and negative impacts of these mechanisms on cell death processes, including uncontrolled and programmed pathways. By unraveling these complex interactions, we argue against the oversimplified notion of a 'stress response', advocating for a more nuanced understanding of redox signaling. This review underscores the importance of localized redox states in determining cell fate, highlighting the sophistication and subtlety of ROS functions beyond mere damage.
Collapse
Affiliation(s)
- Felix Lamontagne
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Cynthia Paz-Trejo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
2
|
Mota GAF, de Souza SLB, Vileigas DF, da Silva VL, Sant'Ana PG, Costa LCDS, Padovani CR, Zanatti Bazan SG, Buzalaf MAR, Santos LDD, Okoshi MP, Gatto M, Cicogna AC. Myocardial proteome changes in aortic stenosis rats subjected to long-term aerobic exercise. J Cell Physiol 2024; 239:e31199. [PMID: 38291668 DOI: 10.1002/jcp.31199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.
Collapse
Affiliation(s)
- Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | | | - Vitor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Paula Grippa Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Licia Carla da Silva Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Silméia Garcia Zanatti Bazan
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | | | | | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Mubeen S, Domingo-Fernández D, Díaz del Ser S, Solanki DM, Kodamullil AT, Hofmann-Apitius M, Hopp MT, Imhof D. Exploring the Complex Network of Heme-Triggered Effects on the Blood Coagulation System. J Clin Med 2022; 11:jcm11195975. [PMID: 36233841 PMCID: PMC9572022 DOI: 10.3390/jcm11195975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Excess labile heme, occurring under hemolytic conditions, displays a versatile modulator in the blood coagulation system. As such, heme provokes prothrombotic states, either by binding to plasma proteins or through interaction with participating cell types. However, despite several independent reports on these effects, apparently contradictory observations and significant knowledge gaps characterize this relationship, which hampers a complete understanding of heme-driven coagulopathies and the development of suitable and specific treatment options. Thus, the computational exploration of the complex network of heme-triggered effects in the blood coagulation system is presented herein. Combining hemostasis- and heme-specific terminology, the knowledge available thus far was curated and modeled in a mechanistic interactome. Further, these data were incorporated in the earlier established heme knowledge graph, "HemeKG", to better comprehend the knowledge surrounding heme biology. Finally, a pathway enrichment analysis of these data provided deep insights into so far unknown links and novel experimental targets within the blood coagulation cascade and platelet activation pathways for further investigation of the prothrombotic nature of heme. In summary, this study allows, for the first time, a detailed network analysis of the effects of heme in the blood coagulation system.
Collapse
Affiliation(s)
- Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
- Enveda Biosciences, Inc., San Francisco, CA 94080, USA
| | - Sara Díaz del Ser
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
- Polytechnic University of Madrid, E-28040 Madrid, Spain
| | - Dhwani M. Solanki
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alpha T. Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
- Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin 683503, Kerala, India
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
| | - Marie-T. Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Correspondence: (M.-T.H.); (D.I.); Tel.: +49-228-73-5231 (M.-T.H.); +49-228-73-5254 (D.I.)
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Correspondence: (M.-T.H.); (D.I.); Tel.: +49-228-73-5231 (M.-T.H.); +49-228-73-5254 (D.I.)
| |
Collapse
|
5
|
Szöőr Á, Szöllősi J, Vereb G. From antibodies to living drugs: Quo vadis cancer immunotherapy? Biol Futur 2021; 72:85-99. [PMID: 34554498 DOI: 10.1007/s42977-021-00072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 01/16/2023]
Abstract
In the last few decades, monoclonal antibodies targeting various receptors and ligands have shown significant advance in cancer therapy. However, still a great percentage of patients experiences tumor relapse despite persistent antigen expression. Immune cell therapy with adoptively transferred modified T cells that express chimeric antigen receptors (CAR) is an engaging option to improve disease outcome. Designer T cells have been applied with remarkable success in the treatment for acute B cell leukemias, yielding unprecedented antitumor activity and significantly improved overall survival. Relying on the success of CAR T cells in leukemias, solid tumors are now emerging potential targets; however, their complexity represents a significant challenge. In preclinical models, CAR T cells recognized and efficiently killed the wide spectrum of tumor xenografts; however, in human clinical trials, limited antitumor efficacy and serious side effects, including cytokine release syndrome, have emerged as potential limitations. The next decade will be an exciting time to further optimize this novel cellular therapeutics to improve effector functions and, at the same time, keep adverse events in check. Moreover, we need to establish whether gene-modified T cells which are yet exclusively used for cancer patients could also be successful in the treatment for other diseases. Here, we provide a concise overview about the transition from monoclonal antibodies to the generation of chimeric antigen receptor T cells. We summarize lessons learned from preclinical models, including our own HER2-positive tumor models, as well as from clinical trials worldwide. We also discuss the challenges we are facing today and outline future prospects.
Collapse
Affiliation(s)
- Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
6
|
Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021; 22:2009. [PMID: 33670516 PMCID: PMC7923026 DOI: 10.3390/ijms22042009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.
Collapse
Affiliation(s)
- Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Marie Frimat
- U1167-RID-AGE, Institut Pasteur de Lille, Inserm, Univ. Lille, F-59000 Lille, France
- Nephrology Department, CHU Lille, Univ. Lille, F-59000 Lille, France
| |
Collapse
|