1
|
Hu L, Su L, Wang Z, Yang J, Wang Y, Wang J, Gu X, Wang H. Application of acid-activated near-infrared viscosity fluorescent probe targeting lysosomes in cancer visualization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124918. [PMID: 39096675 DOI: 10.1016/j.saa.2024.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The higher viscosity and lower pH in lysosomes of cancer cells highlight their potential as biomarkers for cancer. Therefore, the development of acid-activated viscosity fluorescent probes is significant for the early diagnosis and treatment of cancer. Based on this, we have designed and synthesized a near-infrared fluorescent probe based on the 2-(2-hydroxyphenyl)benzothiazole (HBT) group, namely HBTH, to monitor the viscosity changes within lysosomes. It has been demonstrated that HBTH was extremely sensitive to viscosity, with a strong linear relationship between fluorescence intensity and log(viscosity) within the range of (logη) = 0-3.06 (a correlation coefficient of 0.98), proving its capability for quantitative viscosity measurement. In particular, the most obvious fluorescence enhancement of HBTH was only efficiently triggered by the combined effect of low pH and high viscosity. Furthermore, HBTH can rapidly localize to lysosomes by wash-free procedure at a low concentration (100 nM) and achieve high-fidelity imaging within 20 s. It can also monitor the dynamic processes of lysosomes in cells, viscosity changes under drug stimuli, and lysosomal behavior during mitophagy. Importantly, HBTH is capable of identifying tumors in tumor-bearing nude mice through in vivo imaging. These features make HBTH a powerful tool for the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Liping Su
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Zhiyu Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jing Yang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yuqing Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jie Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xiaoxia Gu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
2
|
Sandhu S, Keyworth M, Karimi-Jashni S, Alomar D, Smith BJ, Kozbenko T, Doty S, Hocking R, Hamada N, Reynolds RJ, Scott RT, Costes SV, Beheshti A, Yauk C, Wilkins RC, Chauhan V. AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:85-111. [PMID: 39387375 DOI: 10.1002/em.22631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Bone loss, commonly seen in osteoporosis, is a condition that entails a progressive decline of bone mineral density and microarchitecture, often seen in post-menopausal women. Bone loss has also been widely reported in astronauts exposed to a plethora of stressors and in patients with osteoporosis following radiotherapy for cancer. Studies on mechanisms are well documented but the causal connectivity of events to bone loss development remains incompletely understood. Herein, the adverse outcome pathway (AOP) framework was used to organize data and develop a qualitative AOP beginning from deposition of energy (the molecular initiating event) to bone loss (the adverse outcome). This qualitative AOP was developed in collaboration with bone loss research experts to aggregate relevant findings, supporting ongoing efforts to understand and mitigate human system risks associated with radiation exposures. A literature review was conducted to compile and evaluate the state of knowledge based on the modified Bradford Hill criteria. Following review of 2029 studies, an empirically supported AOP was developed, showing the progression to bone loss through many factors affecting the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The structural, functional, and quantitative basis of each proposed relationship was defined, for inference of causal changes between key events. Current knowledge and its gaps relating to dose-, time- and incidence-concordance across the key events were identified, as well as modulating factors that influence linkages. The new priorities for research informed by the AOP highlight areas for improvement to enable development of a quantitative AOP used to support risk assessment strategies for space travel or cancer radiotherapy.
Collapse
Affiliation(s)
- Snehpal Sandhu
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mitchell Keyworth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Syna Karimi-Jashni
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stephen Doty
- Hospital for Special Surgery Research Institute, New York City, New York, USA
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Substantiable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | | | - Ryan T Scott
- KBR, NASA Ames Research Center, Moffett Field, California, USA
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Research Branch, Mountain View, California, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
He X, Zhao L, Huang B, Zhang G, Lu Y, Mi D, Sun Y. Integrated analysis of miRNAome and transcriptome reveals that microgravity induces the alterations of critical functional gene modules via the regulation of miRNAs in short-term space-flown C. elegans. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:117-132. [PMID: 39067983 DOI: 10.1016/j.lssr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Microgravity, as a unique hazardous factor encountered in space, can induce a series of harmful effects on living organisms. The impact of microgravity on the pivotal functional gene modules stemming from gene enrichment analysis via the regulation of miRNAs is not fully illustrated. To explore the microgravity-induced alterations in critical functional gene modules via the regulation of miRNAs, in the present study, we proposed a novel bioinformatics algorithm for the integrated analysis of miRNAome and transcriptome from short-term space-flown C. elegans. The samples of C. elegans were exposed to two space conditions, namely spaceflight (SF) and spaceflight control (SC) onboard the International Space Station for 4 days. Additionally, the samples of ground control (GC) were included for comparative analysis. Using the present algorithm, we constructed regulatory networks of functional gene modules annotated from differentially expressed genes (DEGs) and their associated regulatory differentially expressed miRNAs (DEmiRNAs). The results showed that functional gene modules of molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathway were facilitated by 25 down-regulated DEmiRNAs (e.g., cel-miR-792, cel-miR-65, cel-miR-70, cel-lsy-6, cel-miR-796, etc.) in the SC vs. GC groups, whereas these modules were inhibited by 13 up-regulated DEmiRNAs (e.g., cel-miR-74, cel-miR-229, cel-miR-70, cel-miR-249, cel-miR-85, etc.) in the SF vs. GC groups. These findings indicated that microgravity could significantly alter gene expression patterns and their associated functional gene modules in short-term space-flown C. elegans. Additionally, we identified 34 miRNAs as post-transcriptional regulators that modulated these functional gene modules under microgravity conditions. Through the experimental verification, our results demonstrated that microgravity could induce the down-regulation of five critical functional gene modules (i.e., molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathways) via the regulation of miRNAs in short-term space-flown C. elegans.
Collapse
Affiliation(s)
- Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ye Lu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| |
Collapse
|
4
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Davis T, Tabury K, Zhu S, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Calvaruso M, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Choukér A, Cialdai F, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Hahn C, Hatton J, Herranz R, Hellweg CE, Iorio CS, Karapantsios T, van Loon JJWA, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, van Ombergen A, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Puhl C, Rettberg P, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Santucci D, Sperl M, Tavella S, Thielemann C, Willaert R, Szewczyk N, Monici M. How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms? NPJ Microgravity 2024; 10:16. [PMID: 38341423 DOI: 10.1038/s41526-024-00357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.
Collapse
Affiliation(s)
- Trent Davis
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Kevin Tabury
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shouan Zhu
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Debora Angeloni
- Institute of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Institute for Cell Biology and Neurobiology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Department Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Eugénie Carnero-Diaz
- Institute of Systematics, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Choukér
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, DSBSC-University of Florence, Florence, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, 56025, Italy
| | - Giuseppe Coppola
- Institute of Applied Science and Intelligent Systems - CNR, Naples, Italy
| | - Gabriella Cusella
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Department of Medical Biotechnologies, University of Siena, Italy and Smart Bio-Interfaces, IIT, Pontedera, PI, Italy
| | - Jean-Francois Desaphy
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, 56025, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Germany & Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, Saint-Etienne, F-42000, France
| | | | - Jason Hatton
- European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine E Hellweg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | | | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht & Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Department, Ifremer centre Bretagne, Plouzané, France
| | | | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Institute for Traumatology, Research Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Christopher Puhl
- Space Applications NV/SA for European Space Agency, Noordwijk, The Netherlands
| | - Petra Rettberg
- DLR, Institute of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Department of Engineering Mathematics, and Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Istituto Superiore Sanità, Rome, Italy
| | | | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | - Nathaniel Szewczyk
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division, DSBSC-University of Florence, Florence, Italy.
| |
Collapse
|
6
|
Garbacki N, Willems J, Neutelings T, Lambert C, Deroanne C, Adrian A, Franz M, Maurer M, De Gieter P, Nusgens B, Colige A. Microgravity triggers ferroptosis and accelerates senescence in the MG-63 cell model of osteoblastic cells. NPJ Microgravity 2023; 9:91. [PMID: 38104197 PMCID: PMC10725437 DOI: 10.1038/s41526-023-00339-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
In space, cells sustain strong modifications of their mechanical environment. Mechanosensitive molecules at the cell membrane regulate mechanotransduction pathways that induce adaptive responses through the regulation of gene expression, post-translational modifications, protein interactions or intracellular trafficking, among others. In the current study, human osteoblastic cells were cultured on the ISS in microgravity and at 1 g in a centrifuge, as onboard controls. RNAseq analyses showed that microgravity inhibits cell proliferation and DNA repair, stimulates inflammatory pathways and induces ferroptosis and senescence, two pathways related to ageing. Morphological hallmarks of senescence, such as reduced nuclear size and changes in chromatin architecture, proliferation marker distribution, tubulin acetylation and lysosomal transport were identified by immunofluorescence microscopy, reinforcing the hypothesis of induction of cell senescence in microgravity during space flight. These processes could be attributed, at least in part, to the regulation of YAP1 and its downstream effectors NUPR1 and CKAP2L.
Collapse
Affiliation(s)
- Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Jérôme Willems
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Thibaut Neutelings
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Charles Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Astrid Adrian
- Airbus Defence and Space, GmbH, 88090, Immenstaad, Germany
| | - Markus Franz
- Airbus Defence and Space, GmbH, 88090, Immenstaad, Germany
| | - Matthias Maurer
- European Space Agency (ESA), European Astronaut Centre (EAC), 51147, Cologne, Germany
| | | | - Betty Nusgens
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Cialdai F, Brown AM, Baumann CW, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Calvaruso M, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Choukér A, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Hahn C, Hatton J, Herranz R, Hellweg CE, Iorio CS, Karapantsios T, van Loon J, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, van Ombergen A, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Puhl C, Rettberg P, Risaliti C, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Santucci D, Sperl M, Strollo F, Tabury K, Tavella S, Thielemann C, Willaert R, Szewczyk NJ, Monici M. How do gravity alterations affect animal and human systems at a cellular/tissue level? NPJ Microgravity 2023; 9:84. [PMID: 37865644 PMCID: PMC10590411 DOI: 10.1038/s41526-023-00330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Austin M Brown
- Honors Tutorial College, Ohio University, Athens, OH, USA
| | - Cory W Baumann
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Debora Angeloni
- Inst. of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN) Boeretang 200, 2400, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Inst. for Cell and Neurobiol, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Dept. Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Marco Calvaruso
- Inst. Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Eugénie Carnero-Diaz
- Inst. Systematic, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Dept. of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Dept of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Choukér
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera (PI), Italy
| | - Giuseppe Coppola
- Institute of Applied Science and Intelligent Sistems - CNR, Naples, Italy
| | - Gabriella Cusella
- Dept of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Dept Medical Biotechnologies, University of Siena, Siena, Italy
- Smart Bio-Interfaces, IIT, Pontedera (PI), Italy
| | - Jean-Francois Desaphy
- Dept. Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025, Pontedera (PI), Italy
| | - Maria Grano
- Dept. Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Dept. Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, F-42000, Saint-Etienne, France
| | | | | | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine E Hellweg
- Radiation Biology Dept., Inst. of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | - Jack van Loon
- Amsterdam University Medical Center, ACTA/VU, Amsterdam, The Netherlands
| | - Matteo Lulli
- Dept. Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Dept. of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Dept. Orthopaedics, Univ. Med. Center Utrecht & Dept. Clinical Sciences, Utrecht Univ, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Dept, Ifremer centre Bretagne, Plouzané, France
| | | | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Inst. Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Inst. for Traumatology, Res. Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Christopher Puhl
- Space Applications NV/SA for European Space Agency, Houston, USA
| | - Petra Rettberg
- DLR, Inst of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy
| | - Angela Maria Rizzo
- Dept. of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Dept of Engineering Mathematics, and Dept of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Dept. Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Inst. Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | | | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Ist. Superiore Sanità, Rome, Italy
| | | | - Felice Strollo
- Endocrinology and Metabolism Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN) Boeretang 200, 2400, Mol, Belgium
| | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., DSBSC-University of Florence, Florence, Italy.
| |
Collapse
|
8
|
Microgravity and Space Medicine. Int J Mol Sci 2021; 22:ijms22136697. [PMID: 34206630 PMCID: PMC8268457 DOI: 10.3390/ijms22136697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023] Open
|