1
|
Alcazer V, Bonaventura P, Tonon L, Michel E, Mutez V, Fabres C, Chuvin N, Boulos R, Estornes Y, Maguer-Satta V, Geistlich K, Viari A, Metzeler KH, Hiddemann W, Batch AMN, Herold T, Caux C, Depil S. HERVs characterize normal and leukemia stem cells and represent a source of shared epitopes for cancer immunotherapy. Am J Hematol 2022; 97:1200-1214. [PMID: 35759575 PMCID: PMC9540360 DOI: 10.1002/ajh.26647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Human endogenous retroviruses (HERVs) represent 8% of the human genome. The expression of HERVs and their immune impact have not been extensively studied in Acute Myeloid Leukemia (AML). In this study, we used a reference of 14,968 HERV functional units to provide a thorough analysis of HERV expression in normal and AML bone marrow cells. We show that the HERV retrotranscriptome accurately characterizes normal and leukemic cell subpopulations, including leukemia stem cells, in line with different epigenetic profiles. We then show that HERV expression delineates AML subtypes with different prognoses. We finally propose a method to select and prioritize CD8+ T cell epitopes derived from AML-specific HERVs and we show that lymphocytes infiltrating patient bone marrow at diagnosis contain naturally occurring CD8+ T cells against these HERV epitopes. We also provide in vitro data supporting the functionality of HERV-specific CD8+ T-cells against AML cells. These results show that HERVs represent an important source of genetic information that can help enhancing disease stratification or biomarker identification and an important reservoir of alternative tumor-specific T cell epitopes relevant for cancer immunotherapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vincent Alcazer
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France
| | - Paola Bonaventura
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Laurie Tonon
- Synergie Lyon Cancer Foundation, Gilles Thomas Bioinformatics Center, Centre Léon Bérard, Lyon, France
| | - Emilie Michel
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Virginie Mutez
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Clémentine Fabres
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Nicolas Chuvin
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Rasha Boulos
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Yann Estornes
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | | | - Kevin Geistlich
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer Foundation, Gilles Thomas Bioinformatics Center, Centre Léon Bérard, Lyon, France
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Dept. of Hematology and Cell Therapy, University of Leipzig, Leipzig, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Aarif M N Batch
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Data Integration for Future Medicine (DiFuture, www.difuture.de), LMU Munich, Munich, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christophe Caux
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Ervaccine Technologies, Centre Leon Bérard, Lyon, France.,Centre Léon Bérard, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Wagner KI, Mateyka LM, Jarosch S, Grass V, Weber S, Schober K, Hammel M, Burrell T, Kalali B, Poppert H, Beyer H, Schambeck S, Holdenrieder S, Strötges-Achatz A, Haselmann V, Neumaier M, Erber J, Priller A, Yazici S, Roggendorf H, Odendahl M, Tonn T, Dick A, Witter K, Mijočević H, Protzer U, Knolle PA, Pichlmair A, Crowell CS, Gerhard M, D'Ippolito E, Busch DH. Recruitment of highly cytotoxic CD8 + T cell receptors in mild SARS-CoV-2 infection. Cell Rep 2021; 38:110214. [PMID: 34968416 PMCID: PMC8677487 DOI: 10.1016/j.celrep.2021.110214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 01/12/2023] Open
Abstract
T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs—classic features of protective immunity—are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.
Collapse
Affiliation(s)
- Karolin I Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Laura M Mateyka
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Simone Weber
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Teresa Burrell
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Behnam Kalali
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Holger Poppert
- Department of Neurology, Helios Klinikum München West, 81241 Munich, Germany; Neurologische Klinik, University Hospital Rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Henriette Beyer
- Department of Neurology, Helios Klinikum München West, 81241 Munich, Germany
| | - Sophia Schambeck
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; Department of Neurology, Helios Klinikum München West, 81241 Munich, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Munich Biomarker Research Center, Deutsches Herzzentrum München, Technical University of Munich (TUM), 80636 Munich, Germany
| | - Andrea Strötges-Achatz
- Institute of Laboratory Medicine, Munich Biomarker Research Center, Deutsches Herzzentrum München, Technical University of Munich (TUM), 80636 Munich, Germany
| | - Verena Haselmann
- Department of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Neumaier
- Department of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alina Priller
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sarah Yazici
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Hedwig Roggendorf
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Marcus Odendahl
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Andrea Dick
- Laboratory of Immunogenetics and Molecular Diagnostics, Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, LMU University Hospital, 81377 Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics and Molecular Diagnostics, Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, LMU University Hospital, 81377 Munich, Germany
| | - Hrvoje Mijočević
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Claudia S Crowell
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
3
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|