1
|
Minasyan AS, Peacey M, Allen T, Nesterova IV. Sequence Context in DNA i-Motifs Can Nurture Very Stable and Persistent Kinetic Traps. Chembiochem 2024; 25:e202400647. [PMID: 39370401 DOI: 10.1002/cbic.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
I-motifs are non-canonical DNA structures with recognized biological significance and a proven utility in material engineering. Consequently, understanding and control of i-motif properties is essential to sustain progress across both disciplines. In this work, we systematically investigate how proximity to the most common form of DNA, a double-stranded duplex, influences the thermodynamic and kinetic properties of adjacent i-motifs. We demonstrate that double-stranded stems in i-motif loops promote kinetic trapping of very stable and persistent partially folded conformations. Further, we investigate pathways toward rational control over a folding topology makeup.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Merlin Peacey
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
2
|
Zhuk AS, Stepchenkova EI, Zotova IV, Belopolskaya OB, Pavlov YI, Kostroma II, Gritsaev SV, Aksenova AY. G-Quadruplex Forming DNA Sequence Context Is Enriched around Points of Somatic Mutations in a Subset of Multiple Myeloma Patients. Int J Mol Sci 2024; 25:5269. [PMID: 38791307 PMCID: PMC11121618 DOI: 10.3390/ijms25105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Institute of Applied Computer Science, ITMO University, 197101 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Zotova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Olesya B. Belopolskaya
- Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia;
- The Laboratory of Genogeography, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ivan I. Kostroma
- City Hospital No. 15, 198205 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | | | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
| |
Collapse
|
3
|
Sergeev AV, Loiko AG, Genatullina AI, Petrov AS, Kubareva EA, Dolinnaya NG, Gromova ES. Crosstalk between G-Quadruplexes and Dnmt3a-Mediated Methylation of the c-MYC Oncogene Promoter. Int J Mol Sci 2023; 25:45. [PMID: 38203216 PMCID: PMC10779317 DOI: 10.3390/ijms25010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites often colocalize with guanine-rich sequences capable of folding into G-quadruplexes (G4s). Our in vitro study aimed to investigate how parallel G4s formed by a sequence derived from the c-MYC oncogene promoter region affect the activity of the Dnmt3a catalytic domain (Dnmt3a-CD). For this purpose, we designed synthetic oligonucleotide constructs: a c-MYC G4-forming oligonucleotide and linear double-stranded DNA containing an embedded stable extrahelical c-MYC G4. The topology and thermal stability of G4 structures in these DNA models were analyzed using physicochemical techniques. We showed that Dnmt3a-CD specifically binds to an oligonucleotide containing c-MYC G4, resulting in inhibition of its methylation activity. c-MYC G4 formation in a double-stranded context significantly reduces Dnmt3a-CD-induced methylation of a CpG site located in close proximity to the quadruplex structure; this effect depends on the distance between the non-canonical structure and the specific CpG site. One would expect DNA hypomethylation near the G4 structure, while regions distant from this non-canonical form would maintain a regular pattern of high methylation levels. We hypothesize that the G4 structure sequesters the Dnmt3a-CD and impedes its proper binding to B-DNA, resulting in hypomethylation and activation of c-MYC transcription.
Collapse
Affiliation(s)
- Alexander V. Sergeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Andrei G. Loiko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Adelya I. Genatullina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Alexander S. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| | - Elizaveta S. Gromova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (A.V.S.); (A.G.L.); (A.I.G.); (A.S.P.); (N.G.D.); (E.S.G.)
| |
Collapse
|
4
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
5
|
Panova VV, Dolinnaya NG, Novoselov KA, Savitskaya VY, Chernykh IS, Kubareva EA, Alexeevski AV, Zvereva MI. Conserved G-Quadruplex-Forming Sequences in Mammalian TERT Promoters and Their Effect on Mutation Frequency. Life (Basel) 2023; 13:1478. [PMID: 37511853 PMCID: PMC10381784 DOI: 10.3390/life13071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Somatic mutations in the promoter region of the human telomerase reverse transcriptase (hTERT) gene have been identified in many types of cancer. The hTERT promoter is known to be enriched with sequences that enable the formation of G-quadruplex (G4) structures, whose presence is associated with elevated mutagenicity and genome instability. Here, we used a bioinformatics tool (QGRS mapper) to search for G4-forming sequences (G4 motifs) in the 1000 bp TERT promoter regions of 141 mammalian species belonging to 20 orders, 5 of which, including primates and predators, contain more than 10 species. Groups of conserved G4 motifs and single-nucleotide variants within these groups were discovered using a block alignment approach (based on the Nucleotide PanGenome explorer). It has been shown that: (i) G4 motifs are predominantly located in the region proximal to the transcription start site (up to 400 bp) and are over-represented on the non-coding strand of the TERT promoters, (ii) 11 to 22% of the G4 motifs found are evolutionarily conserved across the related organisms, and (iii) a statistically significant higher frequency of nucleotide substitutions in the conserved G4 motifs compared to the surrounding regions was confirmed only for the order Primates. These data support the assumption that G4s can interfere with the DNA repair process and affect the evolutionary adaptation of organisms and species.
Collapse
Affiliation(s)
- Vera V Panova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119234, Russia
| | - Nina G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Kirill A Novoselov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Viktoriia Yu Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Ivan S Chernykh
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119234, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
| | - Andrei V Alexeevski
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
- Department of Mathematics, Scientific Research Institute for System Studies, Russian Academy of Sciences, Nakhimovskii Prospekt 36-1, Moscow 117218, Russia
| | - Maria I Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| |
Collapse
|
6
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
7
|
Savitskaya VY, Strekalovskikh VV, Snyga VG, Monakhova MV, Arutyunyan AM, Dolinnaya NG, Kubareva EA. pilE G-Quadruplex Is Recognized and Preferentially Bound but Not Processed by the MutL Endonuclease from Neisseria gonorrhoeae Mismatch Repair Pathway. Int J Mol Sci 2023; 24:ijms24076167. [PMID: 37047138 PMCID: PMC10094033 DOI: 10.3390/ijms24076167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The human pathogen Neisseria gonorrhoeae uses a homologous recombination to undergo antigenic variation and avoid an immune response. The surface protein pilin (PilE) is one of the targets for antigenic variation that can be regulated by N. gonorrhoeae mismatch repair (MMR) and a G-quadruplex (G4) located upstream of the pilE promoter. Using bioinformatics tools, we found a correlation between pilE variability and deletion of DNA regions encoding ngMutS or ngMutL proteins, the main participants in N. gonorrhoeae methyl-independent MMR. To understand whether the G4 structure could affect the ngMutL-mediated regulation of pilin antigenic variation, we designed several synthetic pilE G4-containing oligonucleotides, differing in length, and related DNA duplexes. Using CD measurements and biochemical approaches, we have showed that (i) ngMutL preferentially binds to pilE G4 compared to DNA duplex, although the latter is a cognate substrate for ngMutL endonuclease, (ii) protein binding affinity decreases with shortening of quadruplex-containing and duplex ligands, (iii) the G4 structure inhibits ngMutL-induced DNA nicking and modulates cleavage positions; the enzyme does not cleave DNA within G4, but is able to bypass this noncanonical structure. Thus, pilE G4 may regulate the efficiency of pilin antigenic variation by quadruplex binding to ngMutL and suppression of homologous recombination.
Collapse
Affiliation(s)
| | - Vadim V Strekalovskikh
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Viktoriia G Snyga
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mayya V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nina G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
8
|
Pavlova AV, Dolinnaya NG, Zvereva MI, Kubareva EA, Monakhova MV. New DNA Plasmid Model for Studying DNA Mismatch Repair Response to the G4 Structure. Int J Mol Sci 2023; 24:ijms24021061. [PMID: 36674575 PMCID: PMC9863064 DOI: 10.3390/ijms24021061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/08/2023] Open
Abstract
G-quadruplexes (G4s), the most widely studied alternative DNA structures, are implicated in the regulation of the key cellular processes. In recent years, their involvement in DNA repair machinery has become the subject of intense research. Here, we evaluated the effect of G4 on the prokaryotic DNA mismatch repair (MMR) pathway from two bacterial sources with different mismatch repair mechanisms. The G4 folding, which competes with the maintenance of double-stranded DNA, is known to be controlled by numerous opposing factors. To overcome the kinetic barrier of G4 formation, we stabilized a parallel G4 formed by the d(GGGT)4 sequence in a DNA plasmid lacking a fragment complementary to the G4 motif. Unlike commonly used isolated G4 structures, our plasmid with an embedded stable G4 structure contained elements, such as a MutH cleavage site, required to initiate the repair process. G4 formation in the designed construct was confirmed by Taq polymerase stop assay and dimethyl sulfate probing. The G4-carrying plasmid, together with control ones (lacking a looped area or containing unstructured d(GT)8 insert instead of the G4 motif), were used as new type models to answer the question of whether G4 formation interferes with DNA cleavage as a basic function of MMR.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
- Correspondence: ; Tel.: +7-(495)-939-54-11
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, Moscow 119991, Russia
| |
Collapse
|
9
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
10
|
Loiko AG, Sergeev AV, Genatullina AI, Monakhova MV, Kubareva EA, Dolinnaya NG, Gromova ES. Impact of G-Quadruplex Structures on Methylation of Model Substrates by DNA Methyltransferase Dnmt3a. Int J Mol Sci 2022; 23:ijms231810226. [PMID: 36142137 PMCID: PMC9499004 DOI: 10.3390/ijms231810226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
In mammals, de novo methylation of cytosines in DNA CpG sites is performed by DNA methyltransferase Dnmt3a. Changes in the methylation status of CpG islands are critical for gene regulation and for the progression of some cancers. Recently, the potential involvement of DNA G-quadruplexes (G4s) in methylation control has been found. Here, we provide evidence for a link between G4 formation and the function of murine DNA methyltransferase Dnmt3a and its individual domains. As DNA models, we used (i) an isolated G4 formed by oligonucleotide capable of folding into parallel quadruplex and (ii) the same G4 inserted into a double-stranded DNA bearing several CpG sites. Using electrophoretic mobility shift and fluorescence polarization assays, we showed that the Dnmt3a catalytic domain (Dnmt3a-CD), in contrast to regulatory PWWP domain, effectively binds the G4 structure formed in both DNA models. The G4-forming oligonucleotide displaced the DNA substrate from its complex with Dnmt3a-CD, resulting in a dramatic suppression of the enzyme activity. In addition, a direct impact of G4 inserted into the DNA duplex on the methylation of a specific CpG site was revealed. Possible mechanisms of G4-mediated epigenetic regulation may include Dnmt3a sequestration at G4 and/or disruption of Dnmt3a oligomerization on the DNA surface.
Collapse
Affiliation(s)
- Andrei G. Loiko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence: (A.G.L.); (A.V.S.)
| | - Alexander V. Sergeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Correspondence: (A.G.L.); (A.V.S.)
| | - Adelya I. Genatullina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elizaveta S. Gromova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
11
|
Savitskaya VY, Monakhova MV, Iakushkina IV, Borovikova II, Kubareva EA. Neisseria gonorrhoeae: DNA Repair Systems and Their Role in Pathogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:965-982. [PMID: 36180987 DOI: 10.1134/s0006297922090097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Neisseria gonorrhoeae (a Gram-negative diplococcus) is a human pathogen and causative agent of gonorrhea, a sexually transmitted infection. The bacterium uses various approaches for adapting to environmental conditions and multiplying efficiently in the human body, such as regulation of expression of gene expression of surface proteins and lipooligosaccharides (e.g., expression of various forms of pilin). The systems of DNA repair play an important role in the bacterium ability to survive in the host body. This review describes DNA repair systems of N. gonorrhoeae and their role in the pathogenicity of this bacterium. A special attention is paid to the mismatch repair system (MMR) and functioning of the MutS and MutL proteins, as well as to the role of these proteins in regulation of the pilin antigenic variation of the N. gonorrhoeae pathogen.
Collapse
Affiliation(s)
| | - Mayya V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Iuliia V Iakushkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina I Borovikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
12
|
G-Quadruplex Formed by the Promoter Region of the hTERT Gene: Structure-Driven Effects on DNA Mismatch Repair Functions. Biomedicines 2022; 10:biomedicines10081871. [PMID: 36009419 PMCID: PMC9405553 DOI: 10.3390/biomedicines10081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
G-quadruplexes (G4s) are a unique class of noncanonical DNAs that play a key role in cellular processes and neoplastic transformation. Herein, we focused on the promoter region of human TERT oncogene, whose product is responsible for the immortality of cancer cells. It has been shown by chemical probing and spectroscopic methods that synthetic 96-nt DNAs modeling the wild-type G-rich strand of the hTERT promoter and its variants with G>A point substitutions corresponding to somatic driver mutations fold into three stacked parallel G4s with sites of local G4 destabilization caused by G>A substitutions in the G4 motif. These models were used to elucidate how the hTERT multiG4 affects the binding affinity and functional responses of two key proteins, MutS and MutL, involved in the initial stage of DNA mismatch repair (MMR) in Escherichiacoli and Neisseriagonorrhoeae with different MMR mechanisms. We have shown for the first time that (i) point substitutions do not affect the effective binding of these proteins to the hTERT G4 structure, and (ii) the endonuclease activity of MutL from N. gonorrhoeae is significantly suppressed by the stable G4 scaffold. It is likely that some of the genomic instability associated with G4 may be related to the blockage of human intrinsic methyl-independent MMR attempting to operate near G4 structures.
Collapse
|
13
|
Castellanos M, Verhey TB, Goldstein M, Chaconas G. The Putative Endonuclease Activity of MutL Is Required for the Segmental Gene Conversion Events That Drive Antigenic Variation of the Lyme Disease Spirochete. Front Microbiol 2022; 13:888494. [PMID: 35663861 PMCID: PMC9159922 DOI: 10.3389/fmicb.2022.888494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1–2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Theodore B. Verhey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Madeleine Goldstein
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: George Chaconas,
| |
Collapse
|
14
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
15
|
Pavlova AV, Kubareva EA, Monakhova MV, Zvereva MI, Dolinnaya NG. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021; 11:1284. [PMID: 34572497 PMCID: PMC8472537 DOI: 10.3390/biom11091284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| |
Collapse
|