1
|
Morán-Serradilla C, Plano D, Sharma AK, Sanmartín C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. Int J Mol Sci 2024; 25:7799. [PMID: 39063040 PMCID: PMC11277100 DOI: 10.3390/ijms25147799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of numerous pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Over the past decades, cyclodextrins (CDs) have gathered great attention as potential drug carriers due to their ability to enhance their bioactivities and properties. Likewise, selenium (Se) and tellurium (Te) have been extensively studied during the last decades due to their possible therapeutical applications. Although there is limited research on the relationship between Se and Te and CDs, herein, we highlight different representative examples of the advances related to this topic as well as give our view on the future directions of this emerging area of research. This review encompasses three different aspects of this relationship: (1) modification of the structure of the different CDs; (2) formation of host-guest interaction complexes of naïve CDs with Se and Te derivatives in order to overcome specific limitations of the latter; and (3) the use of CDs as catalysts to achieve novel Se and Te compounds.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Penn State Cancer Institute, 400 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (C.M.-S.); (D.P.)
| |
Collapse
|
2
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
3
|
Gonçalves J, Pinto S, Carmo F, Silva C, Andrade N, Martel F. Additive Cytotoxic and Colony-Formation Inhibitory Effects of Aspirin and Metformin on PI3KCA-Mutant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:5381. [PMID: 38791419 PMCID: PMC11121714 DOI: 10.3390/ijms25105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Human malignancies are one of the major health-related issues throughout the world and are anticipated to rise in the future. Despite huge investments made in anticancer drug development, limited success has been obtained and the average number of FDA approvals per year is declining. So, an increasing interest in drug repurposing exists. Metformin (MET) and aspirin (ASP) possess anticancer properties. This work aims to test the effect of these two drugs in combination on colorectal cancer (CRC) cells in vitro. The effects of MET and/or ASP on cell proliferation, viability, migratory ability, anchorage-independent growth ability (colony formation), and nutrient uptake were determined in two (HT-29 and Caco-2) human CRC cell lines. Individually, MET and ASP possessed antiproliferative, cytotoxic, and antimigratory effects and reduced colony formation in HT-29 cells (BRAF- and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PI3KCA)-mutant), although MET did not affect either 3H-deoxy-D-glucose or 14C-butyrate uptake and lactate production, and ASP caused only a small decrease in 14C-butyrate uptake. Moreover, in these cells, the combination of MET and ASP resulted in a tendency to an increase in the cytotoxic effect and in a potentiation of the inhibitory effect on colony formation, although no additive antiproliferative and antimigratory effects, and no effect on nutrient uptake and lactate production were observed. In contrast, MET and ASP, both individually and in combination, were almost devoid of effects on Caco-2 cells (BRAF- and PI3KCA-wild type). We suggest that inhibition of PI3K is the common mechanism involved in the anti-CRC effect of both MET, ASP and their combination and, therefore, that the combination of MET + ASP may especially benefit PI3KCA-mutant CRC cases, which currently have a poor prognostic.
Collapse
Affiliation(s)
- Joana Gonçalves
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.G.); (S.P.); (F.C.); (N.A.)
| | - Sara Pinto
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.G.); (S.P.); (F.C.); (N.A.)
| | - Francisca Carmo
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.G.); (S.P.); (F.C.); (N.A.)
| | - Cláudia Silva
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-453 Porto, Portugal;
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.G.); (S.P.); (F.C.); (N.A.)
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-453 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.G.); (S.P.); (F.C.); (N.A.)
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Ramos-Inza S, Morán-Serradilla C, Gaviria-Soteras L, Sharma AK, Plano D, Sanmartín C, Font M. Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives. Int J Mol Sci 2024; 25:1532. [PMID: 38338811 PMCID: PMC10855879 DOI: 10.3390/ijms25031532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with different molecules in order to enhance their water solubility, stability, and bioavailability. Nowadays, there is strong, convincing evidence of the anticancer effect of selenium (Se)-containing compounds. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their further evaluation and clinical use. In this work, we study the enhancement of solubility with CD complexes for a set of different nonsteroidal anti-inflammatory drug (NSAID) derivatives with Se as selenoester or diacyl diselenide chemical forms, with demonstrated antitumoral activity. The CD complexes were analyzed via nuclear magnetic resonance (NMR) spectroscopic techniques. In order to obtain additional data that could help explain the experimental results obtained, 3D models of the theoretical CD-compound complexes were constructed using molecular modeling techniques. Among all the compounds, I.3e and II.5 showed a remarkable increase in their water solubility, which could be ascribed to the formation of the most stable interactions with the CDs used, in agreement with the in silico studies performed. Thus, the preliminary results obtained in this work led us to confirm the selection of β and γ-CD as the most suitable for overcoming the pharmaceutical drawbacks of these Se derivatives.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Cristina Morán-Serradilla
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
| | - Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - María Font
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (S.R.-I.); (C.M.-S.); (L.G.-S.); (D.P.); (M.F.)
| |
Collapse
|
5
|
Zhu M, Huang Y, Zhou Z, Liu X, Zhou C, Chen J. Aspirin inhibits the biological behavior of gallbladder carcinoma cells by modulating vascular endothelial growth factor. Am J Transl Res 2023; 15:6779-6785. [PMID: 38186982 PMCID: PMC10767515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To elucidate the effect of aspirin (ASP) on the biological behavior of gallbladder carcinoma (GBC) cells and its influence on vascular endothelial growth factor (VEGF) expression. METHODS Cell Counting Kit-8 (CCK-8) assay was performed to determine the effects of ASP on GBC-SD cell proliferation. In addition, Transwell assay and flow cytometry were carried out to observe the role of ASP in GBC-SD cell migration, invasion and apoptosis, respectively. Tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), and VEGF concentrations in GBC-SD cells were examined by enzyme-linked immunosorbent assays (ELISAs). RESULTS ASP suppressed GBC-SD cell proliferation in a dose-dependent manner, and a concentration ≥ 2 mmol/L could significantly inhibit the migration and invasion of GBC-SD cells and induce apoptosis. In addition, the anticancer effect of ASP in GBC-SD cells may be linked to its inhibition of TNF-α, NF-κB, and VEGF levels. CONCLUSIONS ASP may markedly inhibit GBC-SD cell growth by significantly reducing TNF-α, NF-κB and VEGF expression.
Collapse
Affiliation(s)
- Mingyuan Zhu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University Jiaxing 314000, Zhejiang, China
| | - Yanhua Huang
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University Jiaxing 314000, Zhejiang, China
| | - Zhongcheng Zhou
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University Jiaxing 314000, Zhejiang, China
| | - Xiaolin Liu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University Jiaxing 314000, Zhejiang, China
| | - Chunhui Zhou
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University Jiaxing 314000, Zhejiang, China
| | - Jing Chen
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University Jiaxing 314000, Zhejiang, China
| |
Collapse
|
6
|
Banti CN, Kalampounias AG, Hadjikakou SK. Non-Steroidal Anti-Inflammatory Drugs Loaded to Micelles for the Modulation of Their Water Solubility. Int J Mol Sci 2023; 24:15152. [PMID: 37894836 PMCID: PMC10607354 DOI: 10.3390/ijms242015152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The low water solubility of aspirin (ASPH) is well known, creating research challenges regarding both its composition and its delivery. Therefore, the development of new aspirin-based formulations that are water soluble is a research, technological, and financial issue. With the aim to improve the water solubility of ASPH, the micelle of formula SLS@ASPH (SLS = Sodium Lauryl Sulfate) was formed. The Critical Micelle Concentration (CMC) of SLS in the presence of ASPH was determined by ultrasonic velocity, complementary, and transient birefringence measurements. The SLS@ASPH was characterized by the melting point (m.p.), attenuated total reflection spectroscopy (FT-IR-ATR), and X-ray fluorescence spectroscopy (XRF) in a solid state and in a solution by ultraviolet-visible (UV-Vis) and 1H NMR spectroscopies. The SLS/ASPH molar ratio was determined to be 5/1 in SLS@ASPH. The inhibitory activity of SLS@ASPH towards lipoxygenase (LOX), an enzyme that takes part in the inflammation mechanism, was studied. The inhibitory activity of SLS@ASPH against LOX is 3.5-fold stronger than that of free SLS. The in vitro toxicity of the SLS@ASPH was tested on immortalized human keratinocyte (HaCaT) cells.
Collapse
Affiliation(s)
- Christina N. Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Angelos G. Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Sotiris K. Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
7
|
Chen D, Chen Y, Huang F, Zhang X, Zhou Y, Xu L. The underlying regulatory mechanisms of colorectal carcinoma by combining Vitexin and Aspirin: based on systems biology, molecular docking, molecular dynamics simulation, and in vitro study. Front Endocrinol (Lausanne) 2023; 14:1147132. [PMID: 37564983 PMCID: PMC10410442 DOI: 10.3389/fendo.2023.1147132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a highly prevalent digestive system malignancy. Aspirin is currently one of the most promising chemopreventive agents for CRC, and the combination of aspirin and natural compounds helps to enhance the anticancer activity of aspirin. Natural flavonoids like vitexin have an anticancer activity focusing on colorectal carcinoma. Methods This study investigated the potential mechanism of action of the novel combination of vitexin and aspirin against colorectal cancer through network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments. Results The results of network pharmacology suggested that vitexin and aspirin regulate multiple signaling pathways through various target proteins such as NFKB1, PTGS2 (COX-2), MAPK1, MAPK3, and TP53. Cellular experiments revealed that the combined effect of vitexin and aspirin significantly inhibited HT-29 cell growth. Vitexin dose-dependently inhibited COX-2 expression in cells and enhanced the down-regulation of COX-2 and NF-κB expression in colorectal cancer cells by aspirin. Discussion This study provides a pharmacodynamic material and theoretical basis for applying agents against colorectal cancer to delay the development of drug resistance and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Dengsheng Chen
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Ying Chen
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Fang Huang
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Xiaoling Zhang
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Yulv Zhou
- Department of Chinese Medicine and Anorectology, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Luning Xu
- Department of Clinical Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, Fujian, China
| |
Collapse
|
8
|
Pharmaceutical and Safety Profile Evaluation of Novel Selenocompounds with Noteworthy Anticancer Activity. Pharmaceutics 2022; 14:pharmaceutics14020367. [PMID: 35214099 PMCID: PMC8875489 DOI: 10.3390/pharmaceutics14020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Prior studies have reported the potent and selective cytotoxic, pro-apoptotic, and chemopreventive activities of a cyclic selenoanhydride and of a series of selenoesters. Some of these selenium derivatives demonstrated multidrug resistance (MDR)-reversing activity in different resistant cancer cell lines. Thus, the aim of this study was to evaluate the pharmaceutical and safety profiles of these selected selenocompounds using alternative methods in silico and in vitro. One of the main tasks of this work was to determine both the physicochemical properties and metabolic stability of these selenoesters. The obtained results proved that these tested selenocompounds could become potential candidates for novel and safe anticancer drugs with good ADMET parameters. The most favorable selenocompounds turned out to be the phthalic selenoanhydride (EDA-A6), two ketone-containing selenoesters with a 4-chlorophenyl moiety (EDA-71 and EDA-73), and a symmetrical selenodiester with a pyridine ring and two selenium atoms (EDA-119).
Collapse
|
9
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|