1
|
Victorio CBL, Novera W, Ganasarajah A, Ong J, Thomas M, Wu J, Toh HSY, Sun AX, Ooi EE, Chacko AM. Repurposing of Zika virus live-attenuated vaccine (ZIKV-LAV) strains as oncolytic viruses targeting human glioblastoma multiforme cells. J Transl Med 2024; 22:126. [PMID: 38308299 PMCID: PMC10835997 DOI: 10.1186/s12967-024-04930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain cancer affecting the adult population. Median overall survival for GBM patients is poor (15 months), primarily due to high rates of tumour recurrence and the paucity of treatment options. Oncolytic virotherapy is a promising treatment alternative for GBM patients, where engineered viruses selectively infect and eradicate cancer cells by inducing cell lysis and eliciting robust anti-tumour immune response. In this study, we evaluated the oncolytic potency of live-attenuated vaccine strains of Zika virus (ZIKV-LAV) against human GBM cells in vitro. Our findings revealed that Axl and integrin αvβ5 function as cellular receptors mediating ZIKV-LAV infection in GBM cells. ZIKV-LAV strains productively infected and lysed human GBM cells but not primary endothelia and terminally differentiated neurons. Upon infection, ZIKV-LAV mediated GBM cell death via apoptosis and pyroptosis. This is the first in-depth molecular dissection of how oncolytic ZIKV infects and induces death in tumour cells.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857.
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Arun Ganasarajah
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Melisyaa Thomas
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Jonas Wu
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Hilary Si Yin Toh
- Laboratory of Human Neural Models, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Alfred Xuyang Sun
- Laboratory of Human Neural Models, Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Eng Eong Ooi
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore, 169857
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore, 169857.
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore, 169610.
| |
Collapse
|
2
|
TSPO expression in a Zika virus murine infection model as an imaging target for acute infection-induced neuroinflammation. Eur J Nucl Med Mol Imaging 2023; 50:742-755. [PMID: 36348095 PMCID: PMC9852192 DOI: 10.1007/s00259-022-06019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) is a neurotropic human pathogen that causes neuroinflammation, whose hallmark is elevated translocator protein (TSPO) expression in the brain. This study investigates ZIKV-associated changes in adult brain TSPO expression, evaluates the effectiveness of TSPO radioligands in detecting TSPO expression, and identifies cells that drive brain TSPO expression in a mouse infection model. METHODS The interferon-deficient AG129 mouse infected with ZIKV was used as neuroinflammation model. TSPO expression was evaluated by tissue immunostaining. TSPO radioligands, [3H]PK11195 and [18F]FEPPA, were used for in vitro and ex vivo detection of TSPO in infected brains. [18F]FEPPA-PET was used for in vivo detection of TSPO expression. Cell subsets that contribute to TSPO expression were identified by flow cytometry. RESULTS Brain TSPO expression increased with ZIKV disease severity. This increase was contributed by TSPO-positive microglia and infiltrating monocytes; and by influx of TSPO-expressing immune cells into the brain. [3H]PK11195 and [18F]FEPPA distinguish ZIKV-infected brains from normal controls in vitro and ex vivo. [18F]FEPPA brain uptake by PET imaging correlated with disease severity and neuroinflammation. However, TSPO expression by immune cells contributed to significant blood pool [18F]FEPPA activity which could confound [18F]FEPPA-PET imaging results. CONCLUSIONS TSPO is a biologically relevant imaging target for ZIKV neuroinflammation. Brain [18F]FEPPA uptake can be a surrogate marker for ZIKV disease and may be a potential PET imaging marker for ZIKV-induced neuroinflammation. Future TSPO-PET/SPECT studies on viral neuroinflammation and related encephalitis should assess the contribution of immune cells on TSPO expression and employ appropriate image correction methods to subtract blood pool activity.
Collapse
|
3
|
Victorio CBL, Ong J, Tham JY, Reolo MJ, Novera W, Msallam R, Watanabe S, Kalimuddin S, Low JG, Vasudevan SG, Chacko AM. Preclinical evaluation of [ 18F]FDG-PET as a biomarker of lymphoid tissue disease and inflammation in Zika virus infection. Eur J Nucl Med Mol Imaging 2022; 49:4516-4528. [PMID: 35876869 PMCID: PMC9309455 DOI: 10.1007/s00259-022-05892-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
Purpose Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. Methods [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. Results Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues—particularly the spleen—of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. Conclusion [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.
Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05892-9.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jing Yang Tham
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Marie Jennifer Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Rasha Msallam
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shirin Kalimuddin
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Jenny G Low
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|