1
|
Ogasawara S, Schol J, Sakai D, Warita T, Susumu T, Nakamura Y, Sako K, Tamagawa S, Matsushita E, Soma H, Sato M, Watanabe M. Alginate vs. Hyaluronic Acid as Carriers for Nucleus Pulposus Cells: A Study on Regenerative Outcomes in Disc Degeneration. Cells 2024; 13:1984. [PMID: 39682732 DOI: 10.3390/cells13231984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain, affecting millions globally. Regenerative medicine, particularly cell-based therapies, presents a promising therapeutic strategy. This study evaluates the comparative efficacy of two biomaterials-hyaluronic acid (HA) and alginate-as carriers for nucleus pulposus (NP) cell transplantation in a beagle model of induced disc degeneration. NP cells were isolated, cultured, and injected with either HA or alginate into degenerated discs, with saline and non-cell-loaded carriers used as controls. Disc height index, T2-weighted MRI, and histological analyses were conducted over a 12-week follow-up period to assess reparative outcomes. Imaging revealed that both carrier and cell-loaded treatments improved outcomes compared to degenerative controls, with cell-loaded carriers consistently outperforming carrier-only treated discs. Histological assessments supported these findings, showing trends toward extracellular matrix restoration in both treatment groups. While both biomaterials demonstrated reparative potential, HA showed greater consistency in supporting NP cells in promoting disc regeneration. These results underscore HA's potential as a superior carrier for NP cell-based therapies in addressing disc degeneration.
Collapse
Affiliation(s)
- Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | | | - Takano Susumu
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | | | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hazuki Soma
- TUNZ Pharma Corporation, Osaka 541-0046, Japan
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
2
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
3
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
4
|
Soma H, Sakai D, Nakamura Y, Tamagawa S, Warita T, Schol J, Matsushita E, Naiki M, Sato M, Watanabe M. Recombinant Laminin-511 Fragment (iMatrix-511) Coating Supports Maintenance of Human Nucleus Pulposus Progenitor Cells In Vitro. Int J Mol Sci 2023; 24:16713. [PMID: 38069038 PMCID: PMC10706138 DOI: 10.3390/ijms242316713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The angiopoietin-1 receptor (Tie2) marks specific nucleus pulposus (NP) progenitor cells, shows a rapid decline during aging and intervertebral disc degeneration, and has thus sparked interest in its utilization as a regenerative agent against disc degeneration. However, the challenge of maintaining and expanding these progenitor cells in vitro has been a significant hurdle. In this study, we investigated the potential of laminin-511 to sustain Tie2+ NP progenitor cells in vitro. We isolated cells from human NP tissue (n = 5) and cultured them for 6 days on either standard (Non-coat) or iMatrix-511 (laminin-511 product)-coated (Lami-coat) dishes. We assessed these cells for their proliferative capacity, activation of Erk1/2 and Akt pathways, as well as the expression of cell surface markers such as Tie2, GD2, and CD24. To gauge their regenerative potential, we examined their extracellular matrix (ECM) production capacity (intracellular type II collagen (Col2) and proteoglycans (PG)) and their ability to form spherical colonies within methylcellulose hydrogels. Lami-coat significantly enhanced cell proliferation rates and increased Tie2 expression, resulting in a 7.9-fold increase in Tie2-expressing cell yields. Moreover, the overall proportion of cells positive for Tie2 also increased 2.7-fold. Notably, the Col2 positivity rate was significantly higher on laminin-coated plates (Non-coat: 10.24% (±1.7%) versus Lami-coat: 26.2% (±7.5%), p = 0.010), and the ability to form spherical colonies also showed a significant improvement (Non-coat: 40.7 (±8.8)/1000 cells versus Lami-coat: 70.53 (±18.0)/1000 cells, p = 0.016). These findings demonstrate that Lami-coat enhances the potential of NP cells, as indicated by improved colony formation and proliferative characteristics. This highlights the potential of laminin-coating in maintaining the NP progenitor cell phenotype in culture, thereby supporting their translation into prospective clinical cell-transplantation products.
Collapse
Affiliation(s)
- Hazuki Soma
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (H.S.); (Y.N.); (T.W.); (J.S.); (E.M.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
5
|
Munesada D, Sakai D, Nakamura Y, Schol J, Matsushita E, Tamagawa S, Sako K, Ogasawara S, Sato M, Watanabe M. Investigation of the Mitigation of DMSO-Induced Cytotoxicity by Hyaluronic Acid following Cryopreservation of Human Nucleus Pulposus Cells. Int J Mol Sci 2023; 24:12289. [PMID: 37569664 PMCID: PMC10419032 DOI: 10.3390/ijms241512289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
To develop an off-the-shelf therapeutic product for intervertebral disc (IVD) repair using nucleus pulposus cells (NPCs), it is beneficial to mitigate dimethyl sulfoxide (DMSO)-induced cytotoxicity caused by intracellular reactive oxygen species (ROS). Hyaluronic acid (HA) has been shown to protect chondrocytes against ROS. Therefore, we examined the potential of HA on mitigating DMSO-induced cytotoxicity for the enhancement of NPC therapy. Human NPC cryopreserved in DMSO solutions were thawed, mixed with equal amounts of EDTA-PBS (Group E) or HA (Group H), and incubated for 3-5 h. After incubation, DMSO was removed, and the cells were cultured for 5 days. Thereafter, we examined cell viability, cell proliferation rates, Tie2 positivity (a marker of NP progenitor cells), and the estimated numbers of Tie2 positive cells. Fluorescence intensity of DHE and MitoSOX staining, as indicators for oxidative stress, were evaluated by flow cytometry. Group H showed higher rates of cell proliferation and Tie2 expressing cells with a trend toward suppression of oxidative stress compared to Group E. Thus, HA treatment appears to suppress ROS induced by DMSO. These results highlight the ability of HA to maintain NPC functionalities, suggesting that mixing HA at the time of transplantation may be useful in the development of off-the-shelf NPC products.
Collapse
Affiliation(s)
- Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku 113-8431, Japan
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
6
|
Zhao YD, Huang YC, Lin JL, Li WS. Intervertebral Disc Progenitors: Lessons Learned from Single-Cell RNA Sequencing and the Role in Intervertebral Disc Regeneration. Bioengineering (Basel) 2023; 10:713. [PMID: 37370644 DOI: 10.3390/bioengineering10060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The tremendous personal and economic burden worldwide caused by low back pain (LBP) has been surging in recent years. While intervertebral disc degeneration (IVDD) is the leading cause of LBP and vast efforts have been made to develop effective therapies, this problem is far from being resolved, as most treatments, such as painkillers and surgeries, mainly focus on relieving the symptoms rather than reversing the cause of IVDD. However, as stem/progenitor cells possess the potential to regenerate IVD, a deeper understanding of the early development and role of these cells could help to improve the effectiveness of stem/progenitor cell therapy in treating LBP. Single-cell RNA sequencing results provide fresh insights into the heterogeneity and development patterns of IVD progenitors; additionally, we compare mesenchymal stromal cells and IVD progenitors to provide a clearer view of the optimal cell source proposed for IVD regeneration.
Collapse
Affiliation(s)
- Yu-Dong Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Wei-Shi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| |
Collapse
|
7
|
Li L, Sheng K, Mannarino M, Jarzem P, Cherif H, Haglund L. o-Vanillin Modulates Cell Phenotype and Extracellular Vesicles of Human Mesenchymal Stem Cells and Intervertebral Disc Cells. Cells 2022; 11:cells11223589. [PMID: 36429018 PMCID: PMC9688801 DOI: 10.3390/cells11223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human mesenchymal stem cell (hMSC) and extracellular vesicle (EV) therapy is a promising treatment for discogenic low back pain (LBP). Although promising, major obstacles remain to be overcome. Cellular senescence reduces self-renewal and multipotent potentials, and the senescence-associated secretory phenotype creates an inflammatory environment negatively affecting tissue homeostasis. Reducing senescence could therefore improve regenerative approaches. Ortho-Vanillin (o-Vanillin) has senolytic activity and anti-inflammatory properties and could be a valuable supplement to MSC and EV therapy. Here, we used direct co-culture experiments to evaluate proteoglycan synthesis, inflammatory mediators, and senescent cells in the presence or absence of o-Vanillin. EV release and transfer between hMSCs and intervertebral disc cells (DCs) was examined, and the effect on hMSC differentiation and DC phenotype was evaluated in the presence and absence of o-Vanillin. This study demonstrates that o-Vanillin affects cell communication, enhances hMSC differentiation and improves DC phenotype. Co-cultures of DCs and hMSCs resulted in increased proteoglycan synthesis, a decreased number of senescent cells and decreased release of the cytokines IL6 and 8. Effects that were further enhanced by o-Vanillin. o-Vanillin profoundly increased EV release and/or uptake by hMSCs and DCs. DC markers were significantly upregulated in both cell types in response to conditioned media of o-Vanillin treated donor cells. Collectively, this study demonstrates that o-Vanillin affects hMSC and DC crosstalk and suggests that combining hMSCs and senolytic compounds may improve the outcome of cell supplementation and EV therapy for LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Kai Sheng
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Matthew Mannarino
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Peter Jarzem
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Correspondence: ; Tel.: +1-514-934-1934 (ext. 35380)
| |
Collapse
|
8
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
9
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
10
|
Sako K, Sakai D, Nakamura Y, Schol J, Matsushita E, Warita T, Horikita N, Sato M, Watanabe M. Effect of Whole Tissue Culture and Basic Fibroblast Growth Factor on Maintenance of Tie2 Molecule Expression in Human Nucleus Pulposus Cells. Int J Mol Sci 2021; 22:ijms22094723. [PMID: 33946902 PMCID: PMC8124367 DOI: 10.3390/ijms22094723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation to support and enhance NPPC and Tie2 expression. We also examined the role of PI3K/Akt and MEK/ERK pathways in FGF2 and cFGF-induced Tie2 expression. Young herniating nucleus pulposus tissue was used. We compared WTC and standard primary cell culture, with or without 10 ng/mL FGF2. PI3K/Akt and MEK/ERK signaling pathways were examined through western blotting. Using WTC and primary cell culture, Tie2 positivity rates were 7.0 ± 2.6% and 1.9 ± 0.3% (p = 0.004), respectively. Addition of FGF2 in WTC increased Tie2 positivity rates to 14.2 ± 5.4% (p = 0.01). FGF2-stimulated expression of Tie2 was reduced 3-fold with the addition of the MEK inhibitor PD98059 (p = 0.01). However, the addition of 1 μM Akt inhibitor, 124015-1MGCN, only reduced small Tie2 expression (p = 0.42). cFGF similarly increased the Tie2 expression, but did not result in significant phosphorylation in both the MEK/ERK and PI3K/Akt pathways. WTC with FGF2 addition significantly increased Tie2 maintenance of human NPPC. Moreover, FGF2 supports Tie2 expression via MEK/ERK and PI3K/Akt signals. These findings offer promising tools and insights for the development of NPPC-based therapeutics.
Collapse
Affiliation(s)
- Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Correspondence: (K.S.); (D.S.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: (K.S.); (D.S.)
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Jordy Schol
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Takayuki Warita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Natsumi Horikita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
11
|
Towards Tissue-Specific Stem Cell Therapy for the Intervertebral Disc: PPARδ Agonist Increases the Yield of Human Nucleus Pulposus Progenitor Cells in Expansion. SURGERIES 2021. [DOI: 10.3390/surgeries2010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Low back pain (LBP) is often associated with intervertebral disc degeneration (IVDD). Autochthonous progenitor cells isolated from the center, i.e., the nucleus pulposus, of the IVD (so-called nucleus pulposus progenitor cells (NPPCs)) could be a future cell source for therapy. The NPPCs were also identified to be positive for the angiopoietin-1 receptor (Tie2). Similar to hematopoietic stem cells, Tie2 might be involved in peroxisome proliferator-activated receptor delta (PPARδ) agonist-induced self-renewal regulation. The purpose of this study was to investigate whether a PPARδ agonist (GW501516) increases the Tie2+ NPPCs’ yield within the heterogeneous nucleus pulposus cell (NPC) population. (2) Methods: Primary NPCs were treated with 10 µM of GW501516 for eight days. Mitochondrial mass was determined by microscopy, using mitotracker red dye, and the relative gene expression was quantified by qPCR, using extracellular matrix and mitophagy-related genes. (3) The NPC’s group treated with the PPARδ agonist showed a significant increase of the Tie2+ NPCs yield from ~7% in passage 1 to ~50% in passage two, compared to the NPCs vehicle-treated group. Furthermore, no significant differences were found among treatment and control, using qPCR and mitotracker deep red. (4) Conclusion: PPARδ agonist could help to increase the Tie2+ NPCs yield during NPC expansion.
Collapse
|