1
|
Yang X, Hu R, Sun F, Shen S, Zhang M, Liu Y, Zhang Y, Du H, Lu K, Qu C, Yin N. Identification of the High-Affinity Potassium Transporter Gene Family (HKT) in Brassica U-Triangle Species and Its Potential Roles in Abiotic Stress in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3768. [PMID: 37960124 PMCID: PMC10649870 DOI: 10.3390/plants12213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Members of the high-affinity potassium transporter (HKT) protein family regulate the uptake and homeostasis of sodium and potassium ions, but little research describes their roles in response to abiotic stresses in rapeseed (Brassica napus L.). In this study, we identified and characterized a total of 36 HKT genes from the species comprising the triangle of U model (U-triangle species): B. rapa, B. nigra, B. oleracea, B. juncea, B. napus, and B. carinata. We analyzed the phylogenetic relationships, gene structures, motif compositions, and chromosomal distributions of the HKT family members of rapeseed. Based on their phylogenetic relationships and assemblage of functional domains, we classified the HKT members into four subgroups, HKT1;1 to HKT1;4. Analysis of the nonsynonymous substitutions (Ka), synonymous substitutions (Ks), and the Ka/Ks ratios of HKT gene pairs suggested that these genes have experienced strong purifying selective pressure after duplication, with their evolutionary relationships supporting the U-triangle theory. Furthermore, the expression profiles of BnaHKT genes varies among potassium, phytohormone and heavy-metal treatment. Their repression provides resistance to heavy-metal stress, possibly by limiting uptake. Our results systematically reveal the characteristics of HKT family proteins and their encoding genes in six Brassica species and lay a foundation for further exploration of the role of HKT family genes in heavy-metal tolerance.
Collapse
Affiliation(s)
- Xiaoran Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ran Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yiwei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
2
|
Chen Y, Lin Y, Zhang S, Lin Z, Chen S, Wang Z. Genome-Wide Identification and Characterization of the HAK Gene Family in Quinoa ( Chenopodium quinoa Willd.) and Their Expression Profiles under Saline and Alkaline Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3747. [PMID: 37960103 PMCID: PMC10650088 DOI: 10.3390/plants12213747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
The high-affinity K+ transporter (HAK) family, the most prominent potassium transporter family in plants, which involves K+ transport, plays crucial roles in plant responses to abiotic stresses. However, the HAK gene family remains to be characterized in quinoa (Chenopodium quinoa Willd.). We explored HAKs in quinoa, identifying 30 members (CqHAK1-CqHAK30) in four clusters phylogenetically. Uneven distribution was observed across 18 chromosomes. Furthermore, we investigated the proteins' evolutionary relationships, physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of the CqHAKs family members. Transcription data analysis showed that CqHAKs have diverse expression patterns among different tissues and in response to abiotic stresses, including drought, heat, low phosphorus, and salt. The expressional changes of CqHAKs in roots were more sensitive in response to abiotic stress than that in shoot apices. Quantitative RT-PCR analysis revealed that under high saline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves; under alkaline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves, and CqHAK6, CqHAK9, CqHAK13, CqHAK23, and CqHAK29 were significantly induced in roots. Our results establish a foundation for further investigation of the functions of HAKs in quinoa. It is the first study to identify the HAK gene family in quinoa, which provides potential targets for further functional study and contributes to improving the salt and alkali tolerance in quinoa.
Collapse
Affiliation(s)
- Yanqiong Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yingfeng Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Songbiao Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zonghua Wang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
3
|
Li Q, Du W, Tian X, Jiang W, Zhang B, Wang Y, Pang Y. Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago. BMC Genomics 2022; 23:791. [PMID: 36456911 PMCID: PMC9714174 DOI: 10.1186/s12864-022-09009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
The high-affinity K+ transporter (HAK) family plays a vital role in K+ uptake and transport as well as in salt and drought stress responses. In the present study, we identified 22 HAK genes in each Medicago truncatula and Medicago sativa genome. Phylogenetic analysis suggested that these HAK proteins could be divided into four clades, and the members of the same subgroup share similar gene structure and conserved motifs. Many cis-acting elements related with defense and stress were found in their promoter region. In addition, gene expression profiles analyzed with genechip and transcriptome data showed that these HAK genes exhibited distinct expression pattern in different tissues, and in response to salt and drought treatments. Furthermore, co-expression analysis showed that 6 homologous HAK hub gene pairs involved in direct network interactions. RT-qPCR verified that the expression level of six HAK gene pairs was induced by NaCl and mannitol treatment to different extents. In particular, MtHK2/7/12 from M. truncatula and MsHAK2/6/7 from M. sativa were highly induced. The expression level of MsHAK1/2/11 determined by RT-qPCR showed significantly positive correlation with transcriptome data. In conclusion, our study shows that HAK genes play a key role in response to various abiotic stresses in Medicago, and the highly inducible candidate HAK genes could be used for further functional studies and molecular breeding in Medicago.
Collapse
Affiliation(s)
- Qian Li
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China ,grid.413251.00000 0000 9354 9799West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Wenxuan Du
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Xinge Tian
- grid.262246.60000 0004 1765 430XQinghai Academy of Agriculture and Forestry Sciences, Qinghai University, 810016 Xining, Qinghai, China
| | - Wenbo Jiang
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Bo Zhang
- grid.413251.00000 0000 9354 9799West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Yuxiang Wang
- grid.413251.00000 0000 9354 9799West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, 830052 Urumqi, China
| | - Yongzhen Pang
- grid.410727.70000 0001 0526 1937Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| |
Collapse
|
4
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
5
|
Genome-Wide Characterization of High-Affinity Nitrate Transporter 2 (NRT2) Gene Family in Brassica napus. Int J Mol Sci 2022; 23:ijms23094965. [PMID: 35563356 PMCID: PMC9104966 DOI: 10.3390/ijms23094965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Nitrate transporter 2 (NRT2) plays an essential role in Nitrogen (N) uptake, transport, utilization, and stress resistance. In this study, the NRT2 gene family in two sequenced Brassica napus ecotypes were identified, including 31 genes in ‘Zhongshuang11’ (BnaZSNRT2s) and 19 in ‘Darmor-bzh’ (BnaDarNRT2s). The candidate genes were divided into three groups (Group I−III) based on phylogenetic analyses, supported by a conserved intron-exon structure in each group. Collinearity analysis revealed that the large expansion of BnaZSNRT2s attributed to allopolyploidization of ancestors Brassica rapa and Brassica oleracea, and small-scale duplication events in B. napus. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of BnaZSNRT2s are regulated by multiple factors, and the regulatory pattern is relatively conserved in each group and is tightly connected between groups. Expression assay showed the diverse and differentiated spatial-temporal expression profiles of BnaZSNRT2s in Group I, but conserved patterns were observed in Group II/III; and the low nitrogen (LN) stress up-regulated expression profiles were presented in Group I−III, based on RNA-seq data. RT-qPCR analyses confirmed that BnaZSNRT2.5A-1 and BnaZSNRT2.5C-1 in Group II were highly up-regulated under LN stress in B. napus roots. Our results offer valid information and candidates for further functional BnaZSNRT2s studies.
Collapse
|
6
|
Wei J, Tiika RJ, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in Salicornia europaea L. under varied NaCl and KCl treatments. PeerJ 2022; 10:e12989. [PMID: 35261820 PMCID: PMC8898550 DOI: 10.7717/peerj.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Background The KT/HAK/KUP (KUP) transporters play important roles in potassium (K+) uptake and translocation, regulation of osmotic potential, salt tolerance, root morphogenesis and plant development. However, the KUP family has not been systematically studied in the typical halophyte Salicornia europaea L., and the specific expression patterns of SeKUPs under NaCl condition and K+ deficiency are unknown. Methods In this study, SeKUPs were screened from PacBio transcriptome data of Salicornia europaea L. using bioinformatics. The identification, phylogenetic analysis and prediction of conserved motifs of SeKUPs were extensively explored. Moreover, the expression levels of 24 selected SeKUPs were assayed by real-time quantitative polymerase chain reaction (RT-qPCR). Results In this study, a total of 24 putative SeKUPs were identified in S. europaea. Nineteen SeKUPs with the fixed domain EA[ML]FADL were used to construct the phylogenetic tree, and they were divided into four clusters (clusters I-IV). MEME analysis identified 10 motifs in S. europaea, and the motif analysis suggested that 19 of the identified SeKUPs had at least four K+ transporter motifs existed in all SeKUPs (with the exception of SeKUP-2). The RT-qPCR analysis showed that the expression levels of most SeKUPs were significantly up-regulated in S. europaea when they were exposed to K+ deficiency and high salinity, implying that these SeKUPs may play a key role in the absorption and transport of K+ and Na+ in S. europaea. Discussions Our results laid the foundation for revealing the salt tolerance mechanism of SeKUPs, and provided key candidate genes for further studies on the function of KUP family in S. europaea.
Collapse
Affiliation(s)
- Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| |
Collapse
|
7
|
Yang Q, Wang S, Chen H, You L, Liu F, Liu Z. Genome-wide identification and expression profiling of the COBRA-like genes reveal likely roles in stem strength in rapeseed (Brassica napus L.). PLoS One 2021; 16:e0260268. [PMID: 34818361 PMCID: PMC8612548 DOI: 10.1371/journal.pone.0260268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
The COBRA-like (COBL) genes play key roles in cell anisotropic expansion and the orientation of microfibrils. Mutations in these genes cause the brittle stem and induce pathogen responsive phenotypes in Arabidopsis and several crop plants. In this study, an in silico genome-wide analysis was performed to identify the COBL family members in Brassica. We identified 44, 20 and 23 COBL genes in B. napus and its diploid progenitor species B. rapa and B. oleracea, respectively. All the predicted COBL genes were phylogenetically clustered into two groups: the AtCOB group and the AtCOBL7 group. The conserved chromosome locations of COBLs in Arabidopsis and Brassica, together with clustering, indicated that the expansion of the COBL gene family in B. napus was primarily attributable to whole-genome triplication. Among the BnaCOBLs, 22 contained all the conserved motifs and derived from 9 of 12 subgroups. RNA-seq analysis was used to determine the tissue preferential expression patterns of various subgroups. BnaCOBL9, BnaCOBL35 and BnaCOBL41 were highly expressed in stem with high-breaking resistance, which implies these AtCOB subgroup members may be involved in stem development and stem breaking resistance of rapeseed. Our results of this study may help to elucidate the molecular properties of the COBRA gene family and provide informative clues for high stem-breaking resistance studies.
Collapse
Affiliation(s)
- Qian Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Shan Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Fangying Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
8
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|