1
|
Hao S, Ye M, Li N, Lu Z, Quan W, Xu H, Li M. Comparison of intestinal absorption of soybean protein isolate-, glutenin- and peanut protein isolate-bound N ε-(carboxymethyl) lysine after in vitro gastrointestinal digestion. Food Res Int 2024; 192:114811. [PMID: 39147508 DOI: 10.1016/j.foodres.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Advanced glycation end products (AGEs), a heterogeneous compound existed in processed foods, are related to chronic diseases when they are accumulated excessively in human organs. Protein-bound Nε-(carboxymethyl) lysine (CML) as a typical AGE, is widely determined to evaluate AGEs level in foods and in vivo. This study investigated the intestinal absorption of three protein-bound CML originated from main food raw materials (soybean, wheat and peanut). After in vitro gastrointestinal digestion, the three protein-bound CML digests were ultrafiltered and divided into four fractions: less than 1 kDa, between 1 and 3 kDa, between 3 and 5 kDa, greater than 5 kDa. Caco-2 cell monolayer model was further used to evaluate the intestinal absorption of these components. Results showed that the absorption rates of soybean protein isolate (SPI)-, glutenin (Glu)-, peanut protein isolate (PPI)-bound CML were 30.18%, 31.57% and 29.5%, respectively. The absorption rates of components with MW less than 5 kDa accounted for 19.91% (SPI-bound CML), 22.59% (Glu-bound CML), 23.64% (PPI-bound CML), respectively, and these samples were absorbed by paracellular route, transcytosis route and active route via PepT-1. Taken together, these findings demonstrated that all three protein-bound CML digests with different MW can be absorbed in diverse absorption pathways by Caco-2 cell monolayer model. This research provided a theoretical basis for scientific evaluation of digestion and absorption of AGEs in food.
Collapse
Affiliation(s)
- Shuqi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyu Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zeyu Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
da Silva S, Pérez-Gregorio R, Mateus N, Freitas V, Dias R. Evidence of increased gluten-induced perturbations in the nucleophilic tone and detoxifying defences of intestinal epithelial cells impaired by gastric disfunction. Food Res Int 2023; 173:113317. [PMID: 37803626 DOI: 10.1016/j.foodres.2023.113317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
It has been increasingly demonstrated over the past few years that some proteolytically resistant gluten peptides may directly affect intestinal cell structure and functions by modulating pro-inflammatory gene expression and oxidative stress. The relationship between oxidative cell damage and Celiac Disease (CD) is supported by several studies on human intestinal epithelial cell lines, such as the Caco-2 cell model, already shown to be particularly sensitive to the pro-oxidative and pro-apoptotic properties of gluten protein digests. Through providing valuable evidence concerning some of the pathophysiological mechanisms that may be at play in gluten-related disorders, most of these in vitro studies have been employing simplified digestion schemes and intestinal cell systems that do not fully resemble mature enterocytes in terms of their characteristic tight junctions, microvilli and membrane transporters. Herein the peptide profile and pro-oxidative effect of two different gastrointestinal gliadin digestions was thoroughly characterized and comprehensively compared: one following the complete INFOGEST workflow and a second one by-passing gastric processing, to assess the dependence of gliadin-triggered downstream cell effects on pepsin activity. In both matrices, gluten-derived immunogenic peptide sequences were identified by non-targeted LC-MS/MS. Altogether, this study provides first-hand data concerning the still unexplored peptide composition, gastric-dependence and immunogenicity of physiologically representative gliadin protein digests as well as foundational clues stressing the need for more complex and integrated in vitro cell systems when modelling and exploiting gluten-induced perturbations in the nucleophilic tone and inflammatory status of intestinal epithelial cells.
Collapse
Affiliation(s)
- Sara da Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Rosa Pérez-Gregorio
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal; Department of Analytical and Food Chemistry, Nutrition and Bromatology Area, Faculty of Sciences of the University of Vigo, Ourense, Spain
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Victor Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Ricardo Dias
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Bouhtit F, Najar M, Rahmani S, Melki R, Najimi M, Sadki K, Boukhatem N, Twizere JC, Meuleman N, Lewalle P, Lagneaux L, Merimi M. Bioscreening and pre-clinical evaluation of the impact of bioactive molecules from Ptychotis verticillata on the multilineage potential of mesenchymal stromal cells towards immune- and inflammation-mediated diseases. Inflamm Res 2022; 71:887-898. [PMID: 35716172 DOI: 10.1007/s00011-022-01573-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/07/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE AND DESIGN Mesenchymal stromal cells (MSCs) are currently used in cell reparative medicine due to their trophic and ant-inflammatory properties. The modulation of stem cell properties by phytochemicals has been suggested as a tool to empower their tissue repair capacity. In vitro, MSCs are characterized by their tri-lineage potential that holds great interest for tissue regeneration. Ptychotis Verticillata (PV), an aromatic and medicinal plant, may be thus used to modulate the in vitro multilineage potential of MSCs. MATERIALS AND METHODS We screened the impact of PV-derived essential oil and their bioactive molecules (thymol and carvacrol) on the in vitro multilineage potential of MSCs. Different concentrations and incubation times of these compounds were assessed during the osteogenesis and adipogenesis of MSCs. RESULTS The analysis of 75 conditions indicates that these compounds are biologically active by promoting two major differentiation lineages from MSCs. In a time- and dose-dependent manner, thymol and carvacrol increased the osteogenesis and adipogenesis. CONCLUSION According to these preliminary observations, the addition of PV extract may stimulate the tissue regenerative and repair functions of MSCs. Further optimization of compound extraction and characterization from PV as well as cell treatment conditions should increase their therapeutic value in combination with MSCs.
Collapse
Affiliation(s)
- Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.,Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium. .,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Canada. .,Department of Medicine, University of Montreal, Montreal, Canada.
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.,Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mustapha Najimi
- Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Brussels, Belgium
| | - Khalid Sadki
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University Rabat, Agdal, Rabat, Morocco
| | - Noreddine Boukhatem
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium.,Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.,Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
4
|
Pro-Inflammatory Nutrient: Focus on Gliadin and Celiac Disease. Int J Mol Sci 2022; 23:ijms23105577. [PMID: 35628388 PMCID: PMC9141948 DOI: 10.3390/ijms23105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
|
5
|
Herrera MG, Nicoletti F, Gras M, Dörfler PW, Tonali N, Hannappel Y, Ennen I, Hütten A, Hellweg T, Lammers KM, Dodero VI. Pepsin Digest of Gliadin Forms Spontaneously Amyloid-Like Nanostructures Influencing the Expression of Selected Pro-Inflammatory, Chemoattractant, and Apoptotic Genes in Caco-2 Cells: Implications for Gluten-Related Disorders. Mol Nutr Food Res 2021; 65:e2100200. [PMID: 34110092 DOI: 10.1002/mnfr.202100200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/05/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Proteolysis-resistant gliadin peptides are intensely investigated in biomedical research relates to celiac disease and gluten-related disorders. Herein, the first integrated supramolecular investigation of pepsin-digested gliadin peptides (p-gliadin) is presented in combination with its functional behavior in the Caco-2 cell line. METHODS AND RESULTS First, gliadins are degraded by pepsin at pH 3, and the physicochemical properties of p-gliadin are compared with gliadin. An integrated approach using interfacial, spectroscopic, and microscopic techniques reveals that the p-gliadin forms spontaneously soluble large supramolecular structures, mainly oligomers and fibrils, capable of binding amyloid-sensitive dyes. The self-assembly of p-gliadin starts at a concentration of 0.40 µg mL-1 . Second, the stimulation of Caco-2 cells with the p-gliadin supramolecular system is performed, and the mRNA expression levels of a panel of genes are tested. The experiments show that p-gliadin composed of supramolecular structures triggers significant mRNA up-regulation (p < 0.05) of pro-apoptotic biomarkers (ratio Bcl2/Bak-1), chemokines (CCL2, CCL3, CCL4, CCL5, CXCL8), and the chemokine receptor CXCR3. CONCLUSIONS This work demonstrates that p-gliadin is interfacial active, forming spontaneously amyloid-type structures that trigger genes in the Caco-2 cell line involved in recruiting specialized immune cells.
Collapse
Affiliation(s)
- Maria Georgina Herrera
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany.,Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires, C1113AAD, Argentina
| | - Francesco Nicoletti
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Marion Gras
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany.,Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Philipp W Dörfler
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Nicolo Tonali
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany.,Faculté de Pharmacie, Université Paris-Saclay, BioCIS, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, 92296, France
| | - Yvonne Hannappel
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Inga Ennen
- Department of Physics, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Andreas Hütten
- Department of Physics, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Karen M Lammers
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany.,Tubascan Ltd., Science Park 106, Amsterdam, 1098 XG, the Netherlands
| | - Veronica I Dodero
- Department of Chemistry, Organic Chemistry III, Bielefeld University, Universitätsstr. 25, Bielefeld, 33615, Germany
| |
Collapse
|