1
|
Jorbenadze S, Khatiashvili T, Giunashvili L, Tchelidze A, Lo Faro AF, Pichini S, Farré M, Papaseit E, Nuñez-Montero M, Carlier J, Farkas T, Busardo FP, Chankvetadze B. Challenges encountered in the enantioselective analysis of new psychoactive substances exemplified by clephedrone (4-CMC). J Pharm Biomed Anal 2024; 248:116275. [PMID: 38959760 DOI: 10.1016/j.jpba.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
In this study we report on efforts to develop an enantioselective method for the detection of the drug of abuse clephedrone (1-(4-chlorophenyl)-2-(methylamino)-1-propanone (4-chloromethcathinone, also known as 4-CMC or para-chloro-methcathinone)) and its phase-1 metabolites in human biological fluids. The major goal is not to only report results, but primarily to emphasize the various challenges encountered when developing a reliable analytical method for the detection and quantification of novel psychoactive substances (NPS) and their metabolites in the matrix of interest. Such challenges start with the lack of chemical stability of some NPS in biological matrices. Additionally, most often metabolites are unavailable in pure form to serve as analytical standards, just as deuterated standards for native drugs and metabolites are frequently not commercially available. Furthermore, if the NPS is chiral, enantiomerically pure standards with known absolute stereochemistry are required, as well as a stereochemical stability of a drug and its metabolites becomes an issue. In addition, the chirality of a NPS significantly increases the number of species to be detected in the sample and thus challenges the development of an adequate separation method. These issues are shortly addressed, and some solutions offered in this manuscript.
Collapse
Affiliation(s)
- Saba Jorbenadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Tamar Khatiashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia; Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Lasha Giunashvili
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Aluda Tchelidze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Magi Farré
- Clinical Pharmacology Department, Hospital Universitari Germans Trias I Pujol (HUGTiP-IGTP) and Universitat Autònoma de Barcelelona, Carretera de Canyet s/n, Badalona 08916, Spain
| | - Esther Papaseit
- Clinical Pharmacology Department, Hospital Universitari Germans Trias I Pujol (HUGTiP-IGTP) and Universitat Autònoma de Barcelelona, Carretera de Canyet s/n, Badalona 08916, Spain
| | - Melani Nuñez-Montero
- Clinical Pharmacology Department, Hospital Universitari Germans Trias I Pujol (HUGTiP-IGTP) and Universitat Autònoma de Barcelelona, Carretera de Canyet s/n, Badalona 08916, Spain
| | - Jeremy Carlier
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy
| | - Tivadar Farkas
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia
| | - Francesco Paolo Busardo
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60121, Italy.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, I. Chavchavadze Ave 1, Tbilisi 0179, Georgia.
| |
Collapse
|
2
|
Yeh YL, Wen CY, Hsieh CL, Chang YH, Wang SM. In vitro metabolic studies and machine learning analysis of mass spectrometry data: A dual strategy for differentiating alpha-pyrrolidinohexiophenone (α-PHP) and alpha-pyrrolidinoisohexanophenone (α-PiHP) in urine analysis. Forensic Sci Int 2024; 361:112134. [PMID: 38996540 DOI: 10.1016/j.forsciint.2024.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Synthetic cathinones are some of the most prevalent new psychoactive substances (NPSs) globally, with alpha-pyrrolidinoisohexanophenone (α-PiHP) being particularly noted for its widespread use in the United States, Europe, and Taiwan. However, the analysis of isomeric NPSs such as α-PiHP and alpha-pyrrolidinohexiophenone (α-PHP) is challenging owing to similarities in their retention times and mass spectra. This study proposes a dual strategy based on in vitro metabolic experiments and machine learning-based classification modelling for differentiating α-PHP and α-PiHP in urine samples: (1) in vitro metabolic experiments using pooled human liver microsomes and liquid chromatography tandem quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) were conducted to identify the key metabolites of α-PHP and α-PiHP from the high-resolution MS/MS spectra. After 5 h incubation, 71.4 % of α-PHP and 64.7 % of α-PiHP remained unmetabolised. Nine phase I metabolites were identified for each compound, including primary β-ketone reduction (M1) metabolites. Comparing the metabolites and retention times confirmed the efficacy of in vitro metabolic experiments for differentiating NPS isomers. Subsequently, analysis of seven real urine samples revealed the presence for various metabolites, including M1, that could be used as suitable detection markers at low concentrations. The aliphatic hydroxylation (M2) metabolite peak counts and metabolite retention times were used to determine α-PiHP use. (2) Classification models for the parent compounds and M1 metabolites were developed using principal component analysis for feature extraction and logistic regression for classification. The training and test sets were devised from the spectra of standard samples or supernatants from in vitro metabolism experiments with different incubation times. Both models had classification accuracies of 100 % and accurately identified α-PiHP and its M1 metabolite in seven real urine samples. The proposed methodology effectively distinguished between such isomers and confirmed their presence at low concentrations. Overall, this study introduces a novel concept that addresses the complexities in analysing isomeric NPSs and suggests a path towards enhancing the accuracy and reliability of NPS detection.
Collapse
Affiliation(s)
- Ya-Ling Yeh
- Department of Forensic Science, Central Police University, Taoyuan City, Taiwan (ROC); Forensic Science Center, Taoyuan Police Department, Taoyuan City, Taiwan (ROC).
| | - Che-Yen Wen
- Department of Forensic Science, Central Police University, Taoyuan City, Taiwan (ROC)
| | - Chin-Lin Hsieh
- Forensic Science Center, Criminal Investigation Bureau, National Police Agency, Taipei City, Taiwan (ROC)
| | - Yu-Hsiang Chang
- Forensic Science Center, Criminal Investigation Bureau, National Police Agency, Taipei City, Taiwan (ROC)
| | - Sheng-Meng Wang
- Department of Forensic Science, Central Police University, Taoyuan City, Taiwan (ROC).
| |
Collapse
|
3
|
Taoussi O, Berardinelli D, Zaami S, Tavoletta F, Basile G, Kronstrand R, Auwärter V, Busardò FP, Carlier J. Human metabolism of four synthetic benzimidazole opioids: isotonitazene, metonitazene, etodesnitazene, and metodesnitazene. Arch Toxicol 2024; 98:2101-2116. [PMID: 38582802 PMCID: PMC11169013 DOI: 10.1007/s00204-024-03735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Following isotonitazene scheduling in 2019, the availability of alternative 2-benzylbenzimidazole opioids (nitazenes) on the global drug market increased, resulting in many fatalities worldwide. Nitazenes are potent µ-opioid receptor agonists with strong narcotic/analgesic effects, and their concentrations in biological matrices are low, making the detection of metabolite biomarkers of consumption crucial to document use in clinical and forensic settings. However, there is little to no data on the metabolism of the most recently available nitazenes, especially desnitro-analogues. The aim of the research was to assess isotonitazene, metonitazene, etodesnitazene, and metodesnitazene human metabolism and identify specific metabolite biomarkers of consumption. The four analogues were incubated with 10-donor-pooled human hepatocytes, and the incubates were analyzed by liquid chromatography-high-resolution tandem mass spectrometry and data mining with Compound Discoverer (Thermo Scientific); the analysis was supported by in silico metabolite predictions with GLORYx open-access software. Metabolites were identified in postmortem blood and/or urine samples from two metonitazene-positive and three etodesnitazene-positive cases following the same workflow, with and without glucuronide hydrolysis in urine, to confirm in vitro results. Twelve, nine, twenty-two, and ten metabolites were identified for isotonitazene, metonitazene, etodesnitazene, and metodesnitazene, respectively. The main transformations were N-deethylation at the N,N-diethylethanamine side chain, O-dealkylation, and further O-glucuronidation. In vitro and autopsy results were consistent, demonstrating the efficacy of the 10-donor-pooled human hepatocyte model to predict human metabolism. We suggest the parent and the corresponding O-dealkyl- and N-deethyl-O-dealkyl metabolites as biomarkers of exposure in urine after glucuronide hydrolysis, and the corresponding N-deethyl metabolite as additional biomarker in blood.
Collapse
Affiliation(s)
- Omayema Taoussi
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| | - Diletta Berardinelli
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Tavoletta
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| | - Giuseppe Basile
- Department of Trauma Surgery, IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesco P Busardò
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy.
| | - Jeremy Carlier
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto 10/a, 60126, Ancona AN, Italy
| |
Collapse
|
4
|
Berardinelli D, Taoussi O, Daziani G, Tavoletta F, Ricci G, Tronconi LP, Adamowicz P, Busardò FP, Carlier J. 3-CMC, 4-CMC, and 4-BMC Human Metabolic Profiling: New Major Pathways to Document Consumption of Methcathinone Analogues? AAPS J 2024; 26:70. [PMID: 38862871 DOI: 10.1208/s12248-024-00940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Synthetic cathinones represent one of the largest and most abused new psychoactive substance classes, and have been involved in numerous intoxications and fatalities worldwide. Methcathinone analogues like 3-methylmethcathinone (3-MMC), 3-chloromethcathinone (3-CMC), and 4-CMC currently constitute most of synthetic cathinone seizures in Europe. Documenting their consumption in clinical/forensic casework is therefore essential to tackle this trend. Targeting metabolite markers is a go-to to document consumption in analytical toxicology, and metabolite profiling is crucial to support investigations. We sought to identify 3-CMC, 4-CMC, and 4-bromomethcathinone (4-BMC) human metabolites. The substances were incubated with human hepatocytes; incubates were screened by liquid chromatography-high-resolution tandem mass spectrometry and data were mined with Compound Discoverer (Themo Scientific). 3-CMC-positive blood, urine, and oral fluid and 4-CMC-positive urine and saliva from clinical/forensic casework were analyzed. Analyses were supported by metabolite predictions with GLORYx freeware. Twelve, ten, and ten metabolites were identified for 3-CMC, 4-CMC, and 4-BMC, respectively, with similar transformations occurring for the three cathinones. Major reactions included ketoreduction and N-demethylation. Surprisingly, predominant metabolites were produced by combination of N-demethylation and ω-carboxylation (main metabolite in 3-CMC-positive urine), and combination of β-ketoreduction, oxidative deamination, and O-glucuronidation (main metabolite in 4-CMC-positive urine). These latter metabolites were detected in negative-ionization mode only and their non-conjugated form was not detected after glucuronide hydrolysis; this metabolic pathway was never reported for any methcathinone analogue susceptible to undergo the same transformations. These results support the need for comprehensive screening strategies in metabolite identification studies, to avoid overlooking significant metabolites and major markers of consumption.
Collapse
Affiliation(s)
- Diletta Berardinelli
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Gloria Daziani
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Francesco Tavoletta
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| | - Giovanna Ricci
- School of Law, Section of Legal Medicine, University of Camerino, Camerino, Italy
| | - Livio P Tronconi
- Department of Public Health, Experimental and Forensic Medicine, Unit of Forensic Medicine, University of Pavia, Pavia, Italy
- Maria Cecilia Hospital, Cotignola, Italy
| | | | - Francesco P Busardò
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy.
| | - Jeremy Carlier
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
5
|
Dinis P, Franco J, Margalho C. α-Pyrrolidinohexanophenone (α-PHP) and α-Pyrrolidinoisohexanophenone (α-PiHP): A Review. Life (Basel) 2024; 14:429. [PMID: 38672701 PMCID: PMC11051472 DOI: 10.3390/life14040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
New Psychoactive Substances are currently a serious and growing problem affecting public health worldwide. By 2022, 1184 of these substances had been identified over a period of 16 years. Within these, α-pyrrolidinohexanophenone (α-PHP) and α-pyrrolidinoisohexanophenone (α-PiHP) have emerged, two synthetic cathinones from the pyrovalerone derivates subgroup that are positional isomers of each other. Alpha-PHP appeared on the Japanese illicit drug market in 2014 and, two years later, α-PiHP was identified for the first time in China. They were placed in schedule II on the list of Psychotropic Substances under International Control in 2020 and in March 2023, respectively. Both cathinones have no therapeutic potential for medical use and therefore are abused for recreational habits, which can lead to fatalities. The most frequent adverse effects reported are cardiac, psychiatric, and neurologic, and fatal intoxications have already been described. In Portugal, their consumption and consequent seizures are more prevalent on the archipelagos, which has been aggravating the health situation. In conclusion, these types of substances are a challenge for forensic toxicology since they are easily synthesized, modified, and placed on the market. Therefore, more studies to develop analytical methods to detect them and more comprehensive legislation should be applied. Thus, this review aimed to address the legislative, physicochemical, toxicological, and analytical aspects of both substances.
Collapse
Affiliation(s)
| | | | - Cláudia Margalho
- Laboratory of Forensic Chemistry and Toxicology, National Institute of Legal Medicine and Forensic Sciences, I.P.—Centre Branch, Pólo das Ciências da Saúde (Pólo III)—Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.D.); (J.F.)
| |
Collapse
|
6
|
Roda E, De Luca F, Priori EC, Ratto D, Pinelli S, Corradini E, Mozzoni P, Poli D, Mazzini G, Bottone MG, Gatti AM, Marti M, Locatelli CA, Rossi P, Bottai D. The Designer Drug αPHP Affected Cell Proliferation and Triggered Deathly Mechanisms in Murine Neural Stem/Progenitor Cells. BIOLOGY 2023; 12:1225. [PMID: 37759624 PMCID: PMC10525791 DOI: 10.3390/biology12091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Increasing reports of neurological and psychiatric outcomes due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the understanding of neurotoxic mechanisms is still lacking, particularly for the under-investigated αPHP, one of the major MDPV derivatives. In particular, its effects on neural stem/progenitor cell cultures (NSPCs) are still unexplored. Therefore, in the current in vitro study, the effects of increasing αPHP concentrations (25-2000 μM), on cell viability/proliferation, morphology/ultrastructure, genotoxicity and cell death pathways, have been evaluated after exposure in murine NSPCs, using a battery of complementary techniques, i.e., MTT and clonogenic assay, flow cytometry, immunocytochemistry, TEM, and patch clamp. We revealed that αPHP was able to induce a dose-dependent significant decrease of the viability, proliferation and clonal capability of the NSPCs, paralleled by the resting membrane potential depolarization and apoptotic/autophagic/necroptotic pathway activation. Moreover, ultrastructural alterations were clearly observed. Overall, our current findings demonstrate that αPHP, damaging NSPCs and the morpho-functional fundamental units of adult neurogenic niches may affect neurogenesis, possibly triggering long-lasting, irreversible CNS damage. The present investigation could pave the way for a broadened understanding of SCs toxicology, needed to establish an appropriate treatment for NPS and the potential consequences for public health.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Giuliano Mazzini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
- Institute of Molecular Genetics—CNR (National Research Council), 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Anna Maria Gatti
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Collaborative Centre for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Daniele Bottai
- Department of Pharmaceutical Sciences, Section of Pharmacology and Biosciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
7
|
Jie Z, Qin S, Zhang W, Wang J, Lu J, Qin G, Hou X, Xu P. Metabolic Profile Analysis of Designer Benzodiazepine Etizolam in Zebrafish and Human Liver Microsomes. Metabolites 2023; 13:699. [PMID: 37367857 DOI: 10.3390/metabo13060699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
As one of the most widely abused designer benzodiazepines worldwide, Etizolam is characterized by its high addiction potential, low production cost, and difficulty in detection. Due to the rapid metabolism of Etizolam in the human body, the probability of detecting the Etizolam parent drug in actual case samples by forensic personnel is low. Therefore, without detecting the parent drug, analysis of Etizolam metabolites can help forensic personnel provide references and suggestions on whether the suspect has taken Etizolam. This study simulates the objective metabolic process of the human body. It establishes a zebrafish in vivo metabolism model and a human liver microsome in vitro metabolism model to analyze the metabolic characteristics of Etizolam. A total of 28 metabolites were detected in the experiment, including 13 produced in zebrafish, 28 produced in zebrafish urine and feces, and 17 produced in human liver microsomes. The UPLC-Q-Exactive-MS technology was used to analyze the structures and related metabolic pathways of Etizolam metabolites in zebrafish and human liver microsomes, and a total of 9 metabolic pathways were identified, including monohydroxylation, dihydroxylation, hydration, desaturation, methylation, oxidative deamination to alcohol, oxidation, reduction acetylation, and glucuronidation. Among them, metabolites involving hydroxylation reactions (including monohydroxylation and dihydroxylation) accounted for 57.1% of the total number of potential metabolites, indicating that hydroxylation may be the major metabolic pathway of Etizolam. Based on the response values of each metabolite, monohydroxylation (M1), desaturation (M19), and hydration (M16) were recommended as potential biomarkers for Etizolam metabolism. The experimental results provide reference and guidance for forensic personnel in identifying Etizolam use in suspects.
Collapse
Affiliation(s)
- Zhaowei Jie
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Shiyang Qin
- Forensic Science Service of Beijing Public Security Bureau, Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, China
| | - Wenfang Zhang
- Forensic Science Service of Beijing Public Security Bureau, Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100192, China
| | - Jifen Wang
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Jianghai Lu
- Drug and Food Anti-Doping Laboratory, China Anti-Doping Agency, 1st Anding Road, Beijing 100029, China
| | - Ge Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Xiaolong Hou
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Peng Xu
- Key Laboratory of Drug Monitoring, Control and Anti Drug Key Technologies, Ministry of Public Security, Anti Drug Information Technology Center of the Ministry of Public Security, Beijing 100193, China
| |
Collapse
|
8
|
Pelletier R, Le Daré B, Ferron PJ, Le Bouëdec D, Kernalléguen A, Morel I, Gicquel T. Use of innovative, cross-disciplinary in vitro, in silico and in vivo approaches to characterize the metabolism of chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Arch Toxicol 2023; 97:671-683. [PMID: 36469093 DOI: 10.1007/s00204-022-03427-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Synthetic cathinones constitute a family of new psychoactive substances, the consumption of which is increasingly worldwide. A lack of metabolic knowledge limits the detection of these compounds in cases of intoxication. Here, we used an innovative cross-disciplinary approach to study the metabolism of the newly emerging cathinone chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Three complementary approaches (in silico, in vitro, and in vivo) were used to identify putative 4-Cl-PVP metabolites that could be used as additional consumption markers. The in silico approach used predictive software packages. Molecular networking was used as an innovative bioinformatics approach for re-processing high-resolution tandem mass spectrometry data acquired with both in vitro and in vivo samples. In vitro experiments were performed by incubating 4-Cl-PVP (20 µM) for four different durations with a metabolically competent human hepatic cell model (differentiated HepaRG cells). In vivo samples (blood and urine) were obtained from a patient known to have consumed 4-Cl-PVP. The in silico software predicted 17 putative metabolites, and molecular networking identified 10 metabolites in vitro. On admission to the intensive care unit, the patient's plasma and urine 4-Cl-PVP concentrations were, respectively, 34.4 and 1018.6 µg/L. An in vivo analysis identified the presence of five additional glucuronoconjugated 4-Cl-PVP derivatives in the urine. Our combination of a cross-disciplinary approach with molecular networking enabled the detection of 15 4-Cl-PVP metabolites, 10 of them had not previously been reported in the literature. Two metabolites appeared to be particular relevant candidate as 4-Cl-PVP consumption markers in cases of intoxication: hydroxy-4-Cl-PVP (m/z 282.1254) and dihydroxy-4-Cl-PVP (m/z 298.1204).
Collapse
Affiliation(s)
- Romain Pelletier
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France.
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France.
| | - Brendan Le Daré
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
- Pharmacy, Rennes University Hospital, 35033, Rennes, France
| | - Pierre-Jean Ferron
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
| | - Diane Le Bouëdec
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| | - Angéline Kernalléguen
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
| | - Isabelle Morel
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| | - Thomas Gicquel
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| |
Collapse
|
9
|
α-Methyltryptamine (α-MT) Metabolite Profiling in Human Hepatocyte Incubations and Postmortem Urine and Blood. Metabolites 2023; 13:metabo13010092. [PMID: 36677017 PMCID: PMC9866742 DOI: 10.3390/metabo13010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
α-MT is a hallucinogenic and stimulant tryptamine that was involved in several overdose fatalities in the United States and Europe. Analytical toxicology, and particularly the identification of metabolite biomarkers in biological samples, often is the only way to prove tryptamine use in clinical and forensic caseworks. We aimed to identify optimal α-MT metabolite biomarkers of consumption in humans. We identified α-MT metabolites in 10-donor-pooled human hepatocyte incubations and postmortem urine and blood from an α-MT overdose case using in silico metabolite predictions, liquid chromatography high-resolution-tandem mass spectrometry (LC-HRMS/MS), and software-assisted data mining. Nine metabolites were identified in vitro and eight additional metabolites were found in urine; five metabolites were found in blood. Metabolic transformations were hydroxylation, O-sulfation, O-glucuronidation, N-glucuronidation, and N-acetylation, consistent with the metabolism of structural analogues. The findings in hepatocyte incubations and postmortem samples were consistent, proving the in vitro model suitability. We suggest α-MT, hydroxy-α-MT glucuronide, and two hydroxy-α-MT sulfates as biomarkers of α-MT use in non-hydrolyzed urine; we suggest α-MT, two hydroxy-α-MT sulfates and N-acetyl-α-MT as biomarkers of α-MT use in blood. Further studies on α-MT clinical and forensic caseworks with different doses and routes of administration are necessary to better explore α-MT metabolism.
Collapse
|
10
|
Carlier J, Malaca S, Huestis MA, Tagliabracci A, Tini A, Busardò FP. Biomarkers of 4-hydroxy- N,N-methylpropyltryptamine (4-OH-MPT) intake identified from human hepatocyte incubations. Expert Opin Drug Metab Toxicol 2022; 18:831-840. [PMID: 36609205 DOI: 10.1080/17425255.2022.2166826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND 4-Hydroxy-N,N-methylpropyltryptamine (4-OH-MPT) is a psychedelic tryptamine whose use is regulated in several countries. Due to unspecific effects, consumption can be ascertained only through toxicological analyses. However, the trace amounts of tryptamines are usually challenging to detect in biological samples. 4-OH-MPT metabolism was characterized to identify optimal metabolite markers of intake in clinical/forensic toxicology. RESEARCH DESIGN AND METHODS 4-OH-MPT was incubated with 10-donor-pooled human hepatocytes to simulate in vivo conditions; samples were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS), and data were processed with Compound Discoverer from Thermo Scientific. LC-HRMS/MS and data mining were supported by in silico metabolite predictions (GLORYx). RESULTS Three phase I and four phase II metabolites were identified, including N-oxidation and N-demethylation at the alkylamine chain, and O-glucuronidation and sulfation at the hydroxylindole core. CONCLUSIONS 4-OH-MPT metabolic fate was consistent with the human metabolism of tryptamine analogues: we suggest 4-OH-MPT-N-oxide and 4-hydroxy-N,N-propyltryptamine (4-OH-PT) as metabolite biomarkers of 4-OH-MPT consumption after glucuronide/sulfate hydrolysis in biological samples to improve detection of 4-OH-MPT and phase I metabolites; 4-OH-MPT-glucuronide is suggested as an additional biomarker when hydrolysis is not performed. Further research on the metabolism of structural analogues is necessary to evaluate the specificity of 4-OH-MPT metabolite biomarkers.
Collapse
Affiliation(s)
- Jeremy Carlier
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, Marche Polytechnic University, Ancona, Italy
| | - Sara Malaca
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, Marche Polytechnic University, Ancona, Italy
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adriano Tagliabracci
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, Marche Polytechnic University, Ancona, Italy
| | - Anastasio Tini
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, Marche Polytechnic University, Ancona, Italy
| | - Francesco P Busardò
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
11
|
Busardò FP, Pichini S. Molecular Insights on New Psychoactive Substances (NPSs). Int J Mol Sci 2022; 23:ijms23063282. [PMID: 35328703 PMCID: PMC8948614 DOI: 10.3390/ijms23063282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Francesco Paolo Busardò
- Analytical Pharmacotoxicology Unit, National Centre on Addiction and Doping, Istituto Superiore di Sanità V.Le Regina Elena 299, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-0712206274
| | - Simona Pichini
- Department of Excellence of Biomedical Sciences and Public Health, “Politecnica delle Marche” University of Ancona, Via Tronto 10/a, 60126 Ancona, Italy;
| |
Collapse
|
12
|
Gavrilović I, Gelu Y, Abbate V. In Vitro Metabolic Study of Four Synthetic Cathinones: 4-MPD, 2-NMC, 4F-PHP and bk-EPDP. Metabolites 2022; 12:metabo12020115. [PMID: 35208190 PMCID: PMC8877857 DOI: 10.3390/metabo12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022] Open
Abstract
The use of illicit drugs is exceedingly prevalent in society, and several of them can be illegally purchased from the internet. This occurrence is particularly augmented by the rapid emergence of novel psychoactive substances (NPS), which are sold and distributed as “legal highs”. Amongst NPS, the class of synthetic cathinones represents stimulant substances exhibiting similar effects to amphetamine and its derivatives. Despite potentially being less psychoactive than amphetamine, synthetic cathinones are harmful substances for humans, and little or no information is available regarding their pharmacology and toxicology. The present study investigated the in vitro metabolism and metabolites of four recent synthetic cathinones, namely, 1-(4-methylphenyl)-2-(methylamino)-pentanone (4-MPD), 1-(4-methylphenyl)-2-dimethylamino-propanone (2-NMC), 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl-hexanone (4F-PHP) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-pentanone (bk-EPDP). Our in vitro metabolism study resulted in 24 identified metabolites, including both phase I and phase II metabolites. All metabolites were detected and identified using liquid chromatography–high-resolution mass spectrometry and may serve as additional markers of abuse of these NPS in toxicological analyses.
Collapse
Affiliation(s)
- Ivana Gavrilović
- Drug Control Centre, King’s College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK;
| | - Yunita Gelu
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
- Correspondence: ; Tel.: +44-(0)207-83895
| |
Collapse
|
13
|
Lenzi M, Cocchi V, Gasperini S, Arfè R, Marti M, Hrelia P. Evaluation of Cytotoxic and Mutagenic Effects of the Synthetic Cathinones Mexedrone, α-PVP and α-PHP. Int J Mol Sci 2021; 22:ijms22126320. [PMID: 34204826 PMCID: PMC8231654 DOI: 10.3390/ijms22126320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35–100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.
Collapse
Affiliation(s)
- Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
- Correspondence:
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| |
Collapse
|