1
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Li Y, Ding Q, Gao J, Li C, Hou P, Xu J, Cao K, Hu M, Cheng L, Wang X, Yang X. Novel mechanisms underlying inhibition of inflammation-induced angiogenesis by dexamethasone and gentamicin via PI3K/AKT/NF-κB/VEGF pathways in acute radiation proctitis. Sci Rep 2022; 12:14116. [PMID: 35982137 PMCID: PMC9388498 DOI: 10.1038/s41598-022-17981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Acute radiation proctitis (ARP) is one of the most common complications of pelvic radiotherapy attributed to radiation exposure. The mechanisms of ARP are related to inflammation, angiogenesis, and so on. In this study we evaluated the effect of dexamethasone (DXM) combined with gentamicin (GM) enema on ARP mice, and explored its possible mechanisms by transcriptome sequencing, western blot and immunohistochemistry. C57BL/6 mice were randomly divided into 3 groups: healthy control group, ARP model group, and DXM + GM enema treatment group. ARP mice were established by using a single 6 MV X-ray dose of 27 Gy pelvic local irradiation. Transcriptome sequencing results showed that 979 genes were co-upregulated and 445 genes were co-downregulated in ARP mice compared to healthy mice. According to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, we firstly found that PI3K/AKT/NF-κB/VEGF pathways were mostly correlated with the inflammation-induced angiogenesis in ARP mice. PI3K/AKT pathway leads to the activation of NF-κB, which promotes the transcription of VEGF and Bcl-2. Interestingly, symptoms and pathological changes of ARP mice were ameliorated by DXM + GM enema treatment. DXM + GM enema inhibited inflammation by downregulating NF-κB and upregulating AQP3, as well as inhibited angiogenesis by downregulating VEGF and AQP1 in ARP mice. Moreover, DXM + GM enema induced apoptosis by increasing Bax and suppressing Bcl-2. The novel mechanisms may be related to the downregulation of PI3K/AKT/NF-κB/VEGF pathways.
Collapse
Affiliation(s)
- Yousong Li
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qin Ding
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jinsheng Gao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China.,Ping An Healthcare and Technology Company Limited, Shanghai, 200032, China
| | - Chunxia Li
- Department of Geriatrics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Pengxiao Hou
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Jie Xu
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Kaiqi Cao
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Min Hu
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Lin Cheng
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Xixing Wang
- Department of Oncology, Shanxi Province Research Institute of Traditional Chinese Medicine, Taiyuan, 030012, China.
| | - Xiaoling Yang
- Department of Thoracic Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
4
|
Ahmed ASI, Sheng MHC, Lau KHW, Wilson SM, Wongworawat MD, Tang X, Ghahramanpouri M, Nehme A, Xu Y, Abdipour A, Zhang XB, Wasnik S, Baylink DJ. Calcium released by osteoclastic resorption stimulates autocrine/paracrine activities in local osteogenic cells to promote coupled bone formation. Am J Physiol Cell Physiol 2022; 322:C977-C990. [PMID: 35385325 PMCID: PMC9109806 DOI: 10.1152/ajpcell.00413.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. We hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation. Osteoclastic resorption increases interstitial fluid calcium locally from the normal 1.8 mM up to 5 mM. MC3T3-E1 osteoprogenitors, cultured in a 3.6 mM calcium medium, demonstrated that calcium signaling stimulated osteogenic cell proliferation, differentiation, and migration. Calcium channel knockdown studies implicated calcium channels, Cav1.2, store-operated calcium entry (SOCE), and calcium-sensing receptor (CaSR) in regulating bone cell anabolic activities. MC3T3-E1 cultured in a 3.6 mM calcium medium expressed increased gene expression of Wnt signaling and growth factors platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and bone morphogenic protein-2 (BMP 2). Our coupling model of bone formation, the Receptor activator of nuclear factor-kappa-Β ligand (RANKL) treated mouse calvaria, confirmed the role of calcium signaling in coupled bone formation by exhibiting increased gene expression for osterix and osteocalcin. Critically, dual immunocytochemistry showed that RANKL treatment increased osterix positive cells and increased fluorescence intensity of Cav1.2 and CaSR protein expression per osterix positive cell. The data established that calcium released by osteoclasts contributed to the regulation of coupled bone formation. CRISPR/Cas-9 knockout of Cav1.2 in osteoprogenitors cultured in basal calcium medium caused a >80% decrease in the expression of downstream osteogenic genes, emphasizing the large magnitude of the effect of calcium signaling. Thus, calcium signaling is a major regulator of coupled bone formation.
Collapse
Affiliation(s)
- Abu Shufian Ishtiaq Ahmed
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matilda H C Sheng
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, United States
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California, United States
| | - Sean M Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - M Daniel Wongworawat
- Department of Orthopaedic Surgery, Loma Linda University, Loma Linda, California, United States
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Mahdis Ghahramanpouri
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - Antoine Nehme
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - Yi Xu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States.,Division of Hematology and Oncology, Department of Medicine, Loma Linda University and Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Amir Abdipour
- Division of Nephrology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Xiao-Bing Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, United States
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
5
|
Amukarimi S, Mozafari M. Biodegradable Magnesium Biomaterials-Road to the Clinic. Bioengineering (Basel) 2022; 9:107. [PMID: 35324796 PMCID: PMC8945684 DOI: 10.3390/bioengineering9030107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
In recent decades, we have witnessed radical changes in the use of permanent biomaterials. The intrinsic ability of magnesium (Mg) and its alloys to degrade without releasing toxic degradation products has led to a vast range of applications in the biomedical field, including cardiovascular stents, musculoskeletal, and orthopedic applications. With the use of biodegradable Mg biomaterials, patients would not suffer second surgery and surgical pain anymore. Be that as it may, the main drawbacks of these biomaterials are the high corrosion rate and unexpected degradation in physiological environments. Since biodegradable Mg-based implants are expected to show controllable degradation and match the requirements of specific applications, various techniques, such as designing a magnesium alloy and modifying the surface characteristics, are employed to tailor the degradation rate. In this paper, some fundamentals and particular aspects of magnesium degradation in physiological environments are summarized, and approaches to control the degradation behavior of Mg-based biomaterials are presented.
Collapse
|